Еволюція уявлень про патологічне біомінералоутворення у м'яких тканинах (огляд літератури).

Автор(и)

  • R. A. Moskalenko Сумський державний університет, Ukraine
  • A. M. Romanіuk Сумський державний університет, Ukraine

DOI:

https://doi.org/10.26641/1997-9665.2016.3.24-32

Ключові слова:

біомінералізація, ектопічна кальцифікація, м’які тканини, патологія

Анотація

Ектопічні відкладення сполук кальцію у людському організмі представлені солями кальцію фосфату, переважно гідроксиапатитом. Оскільки патологічна біомінералізація завжди представлена сполуками кальцію, то термін «ектопічна кальцифікація» можна вважати тотожним або дуже близьким за значенням. Багато нещодавно відкритих специфічних механізмів регуляції кальцифікації м’яких тканин свідчать про активність цього процесу та його подібність до процесів окостеніння у скелетній системі. Ектопічна біомінералізація може провокуватися не тільки підвищенням активуючих факторів, але й зниженням інгібуючих факторів. Отже, різні форми патологічної біомінералізації можуть бути обумовленими: 1) тільки посиленням активуючих факторів, 2) тільки зменшенням або втратою інгібіторів мінералізації, 3) комбінацією порушення активації та інгібіції мінералоутворення.

Посилання

Cotran RS, Kumare V, Robbins SL: Cellular injury and cellular death. Pathological basis of disease, 5th ed. Edited by SL Robbins. Philadelphia, WB Saunders; 1994. p. 1-35.

Grynpas M. New insights into the mechanisms of biomineralization. Calcif Tissue Int. 2013; 93: 297-8.

Vernadskiy VI. Biosfera [Biosphera]. I–II. Leningrad: Nauchtechn izdvo; 1926. 147 p. Russian.

Srebnodolskiy BI. Biologicheskaia mineralogiia [Biological mineralogy]. Kyiv: Naukova dumka; 1983. 101 p. Russian.

Zuzuk FB. Mineralogiia urolitiv [Mineralogy of uroliths]. I-III. Lutsk: Vezha; 2004. 582 p. Ukrainian.

Giachelli CM. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res. 2005; 8 (4):229-31.

Block GA, Hulbert-Shearon TE. Association of serum phosphorus and calcium X phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998; 31: 607-17.

Strukov AI, Serov VV, Sarkissov DS. editors. [General human pathology] Moscow: Меditsina; 1990. 447 p. Russian.

Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep. 2003; 5(3):222-6.

Moskalenko R, Rieznik A, Gapchenko A, et al. [Morphological examination of thyroid diseases accompanied by biomineralization]. World of medicine and biology. 2015; (3): 324-31. Ukrainian.

Tang Z, Wang A, Yuan F et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun. 2012; 3: 875.

Schiller A.L, Teitelbaum S.L. Bones and joints. In: Rubin E.; Farber JL, editors. Pathology. Lippincott-Raven; 1999. P. 1337-47.

Proudfoot D, Skepper JN, Hegyi L, et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res. 2000; 87: 1055-62.

Sage AP, Tintut Y, Demer LL. Hyperphosphatemia-induced nanocrystal upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 74: 414-22.

Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014; 34 (4): 715-23.

Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biominerals. Front Biosci. 2005; 10:822-37.

Kirsch T. Determinants of pathological mineralization. Crit Rev Eukaryot Gene Expr. 2008; 18 (1):1-9.

Anderson HC. Mineralization by matrix vesicles. Scan Electron Microsc. 1984; (Pt 2):953-64.

Kapustin AN, Davies JD, Reynolds JL, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011; 109:e1-12.

Chen NX, O’Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res. 2008; 23: 1798-805.

New SE, Alikawa E. The role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013; 33 (8): 1753-8.

New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plagues. Circ Res. 2013; 113: 72-7.

Hessle L, Johnson KA, Anderson HC, et al. Tissue-nonspecific alkiline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulations of bone mineralization. PNAS. 2002 ; 99 : 9445-9.

Yadav MC, Simao AM, Narisawa S, et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function. J Bone Miner Res. 2011; 26: 286-97.

Kiffer-Moreira T, Yadav MC, Zhu D, et al. Pharmacological inhibition of PHOSPHO1 suppresses smooth muscle cell calcification. J Bone Miner Res. 2013; 28: 81-91.

Ueland T, Dahl CP, Gullestad L, et al. Circulating levels of non-phosphorylated undercarboxylated matrix Gla protein are associated with disease severity in patients with chronic heart failure. Cli Sci (Lond). 2011; 121: 119-27.

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix Gla protein. Nature. 1997; 386: 78-81.

Schurgers LJ, Teunissen KJ, Knapen MH, et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: Undercarboxylated matrix Gla protein as marker for vascular calcification. Arterioscler Thromb Vasc Biol. 2005; 25: 1629-33.

Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999; 93 (6): 1798-808.

Jahnen-Dechent W, Shafer C, Heiss A, Grotzinger J. Systemic inhibition of spontaneous calcification by the serum protein alpha 2-HS glycoprotein/fetuin. Z Kardiol. 2001; 90 (Suppl 3): 47-56.

Jahnen W, Shafer C, Ketteler M, McKee MD. Mineral shaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med. 2008; 86: 379-89.

Heiss A, Eckert T, Aretz A, Richtering W, van Dorp W, et al. Hierarchical role of fetuin A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. 2008; 283: 14815-25.

Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci. 2015; 16: 2598-621.

Simonet WS, Lacey D, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 89 (2): 309-19.

Maziere C, Salle V, Gomilla C, Maziere JC. Oxidized low density lipoprotein enhanced RANKL expression in human osteoblast-like cells. Involvement of ERK, NfkappaB and NFAT. Biochim Biophys Acta. 2013 ; 1832 : 1756-64.

Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, et al. Osteoprotegerin-deficient mice develop early oncet osteoporosis and arterial calcification. Genes Dev. 1998 ; 12 : 1260-8.

Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr (-/-) mice. Circulation. 2008 ; 117 : 411-20.

Zhou S, Fang X, Xin H, Li W, Qui H, Guan S. Osteoprotegerin inhibits calcification of vascular smooth muscle cells via downregulation of the Notch1-RBP-Jkappa/Msx2 signaling pathway. PloS One. 2013 ; 8 :e68987.

Schoppet M, Al-Fakhri N, Franke FE, et al. Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Monckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab. 2004; 89: 4104-12.

Callegari A, Coons M, Ricks JL, Yang HL, Gross TS, et al. Bone marrow- or vessel wall-derived osteoprotegerin is sufficied to reduce atherosclerotic lesion size and vascular calcification. Athroscler Thromb Vasc Biol. 2013 ; 33 : 2491-500. doi: 10.1161/ATVBAHA.113.301755.

Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008; 389: 233-41.

Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007; 195: 125-31.

Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW. Klotto dificiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011 ; 22 : 124-36.

Towler DA. Inorganic pyrophosphate: A paracrine regulator of vascular calcification and smooth muscle phenotype. Arterioscler Thromb Vasc Biol. 2005; 25: 651-4.

Menini S, Iacobini C, Ricci C, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013; 100: 472-80.

Nguyen N, Naik V, Speer MY. Diabetes mellitus accelerates cartilaginous metaplasia and calcification in atherosclerotic vessels of LDRr mutant mice. Cardiovasc Pathol. 2013; 22: 167-75.

McCormick M, Rahimi F, Bobryshev YV, Gaus K, et al. S100A8 and S100A9 in human arterial wall. The journal of biological chemistry. 2005;280(50):41521-9.

Hofman Bowman MA, Gawdzik J, Buchari U, Husain AN, Toth PT, Earley J, McNally EM. S100A12 in vascular smooth musle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic genes regulators program. Altherioscler Thromb Vasc Bio. 2011; 31: 337-44.

Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanism to clinical implications. Atherosclerosis. 2008; 196: 9-21.

Zhu W, Sano H, Nagai R, et al. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001; 280: 1183-8.

Iacobini C, Menini S, Ricci C, et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscl Thromb Vasc Bi-ol. 2009; 29: 831-6.

Stock M, Schafer H, Stricker S, et al. Expression of galectin-3 in skeletal tissues is controlled by Runx2. J Biol Chem. 2003; 17360-7.

Li Q, Jiang Q, Uitto J. Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification. Matrix Biol. 2014 Jan;33:23-8. doi: 10.1016/j.matbio.2013.06.003.

Pugliese G, Iacobini C, Blasetti-Fantanaucci C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015; 238 (2):220-3.

Hoshino T, Chow LA, Hsu JJ, et al. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plague vulnerability. Am J Physiol Heart Circ Physiol. 2009; 297: H802-10.

Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries, PNAS. 2013; 110: 10741-6.

Liu Y, Drozdov I, Shroff R, Beltran LE, Shanaban CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in a vascular smooth muscle cells. Circ Res. 2013; 112: e99-109.

Aikawa E, Nahrendorf M, Figueiredo JL, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007; 116: 2841-50.

Abdelbaky A, Corsini E, Figueroa AL, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging. 2013; 6: 747-54.

Abedin M, Lim J, Tang TB, et al. N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor gamma pathways. Circ Res. 2006; 98: 727-9.

Moe SM, Chen NX. Pathophysiology of vascular calcification in chronic kidney disease. Circ Res. 2004; 95: 560-7.

##submission.downloads##

Номер

Розділ

Статті