Критерії вибору оптимальних параметрів поперекового міжпоперечного спондилодезу у кролів

Автор(и)

  • V. O. Radchenko SE “Sytenko Institute of Spine and Joint Pathology, AMS Ukraine”, Kharkiv, Ukraine
  • O. V. Palkin SE “Sytenko Institute of Spine and Joint Pathology, AMS Ukraine”, Kharkiv, Ukraine
  • V. A. Kolesnichenko SE “Sytenko Institute of Spine and Joint Pathology, AMS Ukraine”, Kharkiv, Ukraine

DOI:

https://doi.org/10.26641/1997-9665.2017.4.40-47

Ключові слова:

поперековий межпоперечний спондилодез, кістковий аутотрансплантат, кролі, експериментальна модель, мета-аналіз

Анотація

Мета – визначити за результатами мета-аналізу фактори, що впливають на частоту кісткового зрощення при експериментальному поперековому межпоперечному спондилодезі у кролів. Методи дослідження - статистичні. Результати - оптимальні експериментальні умови включають: вага кролів більше 3 кг, рівень спондилодезу LIV - LV або LV - LVI, кількість кісткового аутотрансплантата - 2,0 - 2,5 см3 з кожного боку артродезованого сегмента, тривалість експерименту - не менше 5 тижнів.

Посилання

Schimandle JH, Boden SD. Spine update. Animal use in spinal research. Spine (Phila Pa 1976). 1994;19:2474–7.

Schimandle JH, Boden SD. Spine update. The use of animal models to study spinal fusion. Spine (Phila Pa 1976). 1994;19:1998–2006.

Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995;20(4):412–20.

Boden SD. The biology of posterolateral lumbar spinal fusion. Orthop Clin North Am. 1998;29:603–19.

Ghodasra JH, Daley EL, Hsu EL, Hsu WK. Factors influencing arthrodesis rates in a rabbit posterolateral spine model with iliac crest autograft. Eur Spine J. 2014;23:426–34.

Drespe IH, Polzhofer GK, Turner AS, Grauer JN. Animal models for spinal fusion. Spine J. 2005;5(6):209S–216S. DOI:10.1016/j.spinee.2005.02.013.

Riordan AM, Rangarajan R, Balts JW, Hsu WK, Anderson PA. Reliability of the rabbit posterolateral spinal fusion model: A meta-analysis. J. Or-thop. Res. 2013;1261–9. DOI:10.1002/jor.22359

Liao JC, Chen WJ, Chen LH, et al. Low-intensity pulsed ultrasound enhances healing of laminectomy chip bone grafts on spinal fusion: a model of posterolateral intertransverse fusion in rabbits. J Trauma. 2011;70:863–9.

Walsh WR, et al. Posterolateral spinal fusion in a rabbit model using a collagen-mineral composite bone graft substitute. Eur Spine J. 2009;18:1610–20.

Boden SD, Martin GJ, Morone M, et al. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine. 1999;24:320–7.

Curylo LJ, Johnstone B, Petersilge CA, Janicki JA, Yoo JU. Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine. 1999;24(5):434–8.

Chen WJ, Huang JW, Niu CC, Chen LH, Yuan LJ, Lai PL, Yang CY, Lin SS. Use of fluorescence labeled mesenchymal stem cells in pluronic F127 and porous hydroxyapatite as a bone substitute for posterolateral spinal fusion. J Orthop Res. 2009;27(12):1631–6. DOI:10.1002/jor.20925.

Roberts I, Kwan I, Evans P, et al. Does animal experimentation inform human healthcare? Observations… BMJ. 2002;324:474–6.

Bransford R, Goergens E, Briody J, Amanat N, Cree A, Little D. Effect of zoledronic acid in an L6–L7 rabbit spine fusion model. Eur Spine J. 2007;16(4):557–62. DOI:10.1007/s00586-0060212-y.

Miller CP, Jegede K, Essig D, Garg H, Bible JE, Biswas D, Whang PG, Grauer JN. The efficacies of two ceramic bone graft extenders for promoting spinal fusion in a rabbit bone paucity model. Spine. 2011;37(8):642–7. DOI:10.1097/BRS.0b013e31822e604e.

O’Loughlin PF, Cunningham ME, Bukata SV, Tomin E, Poynton AR, Doty SB, Sama AA, Lane JM. Parathyroid hormone (1–34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34(2):121–30. DOI:10.1097/BRS.0b013e318191e687.

Sethi PM, Miranda JJ, Kadiyala S, Patel T, Panjabi M, Troiano N, Friedlaender GE. Evaluation of autologous platelet concentrate for intertransverse process lumbar fusion. Am J Orthop (Belle Mead, NJ). 2008;37(4):E84–E90.

Urrutia J, Briceno J, Carmona M, Olavarria F, Hodgson F. Effect of a single dose of pamidronate administered at the time of surgery in a rabbit posterolateral spinal fusion model. Eur Spine J. 2010;19(6):940–4. DOI:10.1007/s00586-010-1288-y.

Urrutia J, Mery P, Martinez R, Pizarro F, Apablaza D, Mardones R. Cultured autologous bone marrow stem cells inhibit bony fusion in a rabbit model of posterolateral lumbar fusion with autologous bone graft. J Clin Neurosci. 2010;17(4):481–5. DOI:10. 1016/j.jocn.2009.06.024.

Yee AJ, Bae HW, Friess D, Robbin M, John-stone B, Yoo JU. Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine. 2003;28(21):2435–40. DOI:10.1097/01.BRS.0000090828.65638.8C.

Yee AJ, Bae HW, Friess D, Robbin M, Johnstone B, Yoo JU. Accuracy and interobserver agree-ment for determinations of rabbit posterolateral spinal fusion. Spine. 2004;29(12):1308–13.

Yee AJ, Bae HW, Friess D, Roth SM, Whyne C, Robbin M, Johnstone B, Yoo JU. The use of simvastatin in rabbit posterolateral lumbar intertransverse process spine fusion. Spine J. 2006;6(4):391–6. DOI:10.1016/j.spinee.2005.10.017.

Tanaka K, Takemoto M, Fujibayashi S, Neo M, Shikinami Y, Nakamura T. A bioactive and biore-sorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting. Spine. 2011;36(6):441–7. DOI:10.1097/BRS.0b013e3181d39067.

Motomiya M, Ito M, Takahata M, Kadoya K, Irie K, Abumi K, Minami A. Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J. 2007;16(12):2215–24. DOI:10.1007/s00586-007-0501-0.

Boden SD, Schimandle JH, Hutton WC. Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine (Phila Pa 1976). 1995;20:2633–44.

Liao SS, et al. Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine. 2003;28:1954–60.

Minamide A, et al. Experimental study of carriers of bone morphogenetic protein used for spinal fusion. J Orthop Sci. 2004;9:142–51.

Sun TS, et al. Effect of nano-hydroxyapatite/collagen composite and bone morphogenetic protein-2 on lumbar intertransverse fusion in rabbits. Chin J Traumatol. 2004;7:18–24.

Grauer JN, et al. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine. 2001;26:127–33.

Erulkar JS, Grauer JN, Patel TC, Panjabi MM. Flexibility analysis of posterolateral fusions in a New Zealand white rabbit model. Spine. 2001;26(10):1125–30.

Lehman RA, Kuklo TR, Freedman BA, Cowart JR, Mense MG, Riew KD. The effect of alendronate sodium on spinal fusion: a rabbit model. Spine J. 2004;4(1):36–43. DOI:10.1016/s15299430(03)00427-3.

Blumenthal SL, Gill K. Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions. Spine. 1993;18(9):1186–9.

Jackson RS, Asher MA, Lark RG. Analysis of posterior spinal wiring in a validated rabbit model. Clin Orthop Relat Res. 2000;373:285–94.

Feiertag MA, et al. A rabbit model for non-union of lumbar intertransverse process spine arthrodesis. Spine. 1996;21:27–31.

Yao G, Qian Y, Chen J, Fan Y, Stoffel K, Yao F, Xu J, Zheng MH. Evaluation of insoluble bone gelatin as a carrier for enhancement of osteo-genic protein-1-induced intertransverse process lumbar fusion in a rabbit model. Spine. 2008;33(18):1935–42. DOI:10.1097/BRS.0b013e31817e1cf1.

Babat LB, McLain R, Milks R, Ferrara L, Sohn MJ. The effects of the antiresorptive agents calcitonin and pamidronate on spine fusion in a rabbit model. Spine J. 2005;5(5):542–7. DOI:10. 1016/j.spinee.2005.01.008.

Choi Y, Oldenburg FP, Sage L, Johnstone B, Yoo JU. A bridging demineralized bone implant facilitates posterolateral lumbar fusion in New Zea-land white rabbits. Spine. 2007;32(1):36–41. DOI:10.1097/01.brs.0000250982.41666.55.

Minamide A, Kawakami M, Hashizume H, Sakata R, Yoshida M, Tamaki T. Experimental study of carriers of bone morphogenetic protein used for spinal fusion. J Orthop Sci. 2004;9(2):142–51. DOI:10.1007/s00776-003-0749-0.

Tortolani PJ, Park AE, Louis-Ugbo J, Attal-lah-Wasef ES, Kraiwattanapong C, Heller JG, Boden SD, Yoon ST. The effects of doxorubicin (adriamycin) on spinal fusion: an experimental model of pos-terolateral lumbar spinal arthrodesis. Spine J. 2004;4(6):669–74. DOI:10.1016/j.spinee.2004.05.254

Minamide A, Yoshida M, Kawakami M, Okada M, Enyo Y, Hashizume H, Boden SD. The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion. Spine. 2007;32(10):1067–71. DOI:10.1097/01.brs.0000261626.32999.8a.

Urrutia J, Thumm N, Apablaza D, Pizarro F, Zylberberg A, Quezada F. Autograft versus allograft with or without demineralized bone matrix in posterolateral lumbar fusion in rabbits. Laboratory investigation. J Neurosurg Spine. 2008;9(1):84–9. DOI:10.3171/SPI/2008/9/7/084

Walsh WR, Vizesi F, Cornwall GB, Bell D, Oliver R, Yu Y. Posterolateral spinal fusion in a rabbit model using a collagen-mineral composite bone graft substitute. Eur Spine J. 2009;18(11):1610–20. DOI:10.1007/s00586-009-1034-5.

Peters JL, Sutton AJ, Jones DR, et al. A systematic review of systematic reviews and meta-analyses of animal experiments with guidelines for reporting. J Environ Sci Health B. 2006;41:1245–58.

##submission.downloads##

Опубліковано

2017-12-22

Номер

Розділ

Статті