Просте методичне пристосування для мікроін'єкторних маніпуляцій і вимірювань на електроморфологічному чипі при мікроінтерферометричному контролі інтерфейсних і мембранних процесів на діапазоні товщини від 50 до 10000 ангстрем під різними кутами

Автор(и)

  • O. V. Gradov Institute of Energetic Problems of Chemical Physics RAS named by V.L. Talroze, Російська Федерація
  • F. A. Nasirov Institute of Energetic Problems of Chemical Physics RAS named by V.L. Talroze, Російська Федерація
  • A. A. Skrynnik Institute of Energetic Problems of Chemical Physics RAS named by V.L. Talroze, Російська Федерація
  • A. G. Jablokov Institute of Energetic Problems of Chemical Physics RAS named by V.L. Talroze, Російська Федерація

DOI:

https://doi.org/10.26641/1997-9665.2017.4.7-17

Ключові слова:

мікроелектроди, мікроінтерферометр, мікроперфузія, патч-кламп, мікроманіпуляція, перфузія одиночних клітин, цитоелектрофізіологічний чіп

Анотація

Мікроманіпуляції, перфузії і вимірювання, що проводяться з використанням скляних мікроелектродів, заповнених, як правило, електролітом, є класичною технікою експериментально-морфологічних і мембранно-електрофізіологічних досліджень на рівні окремих клітин і мембранних поверхонь. Стандартний (ефективний) діаметр скляного мікроелектрода в кінцевій області становить від 500 нм до менш ніж 100 нм, що перешкоджає використанню стандартних оптичних мікроскопів для його спостереження, відповідно до оптичних критеріїв (критерій Релєя і т.п.), оскільки при діаметрі конуса менше 500 нм він губиться в інтерференційної облямівці. Мікропроцесорним програмуванням пуллера (мікрокузні), що забезпечує витягування і розрив, хоча і можна досягти в відомих режимах заданих форм і діаметра кінця мікропіпеток, цей результат не є в повній мірі контрольованим в силу вищевказаних обмежень. У зв'язку з цим необхідне створення пристроїв контролю кінцевого фрагмента мікропіпеток як при отриманні, так і при експлуатації (внутрішньоклітинному або екстрацелюлярному введенні) в штатному режимі. При цьому необхідно, щоб даний метод дозволяв візуалізувати на зображенні клітини з мікроелектродами в реальному часі процеси, що відбуваються між ними, в залежності від типу і стану електрода, що дозволить нівелювати артефакти, з частотою систематичної помилки, що виникають при неконтрольованій експлуатації кінця мікропіпеток після застосування різних способів заливки електроліту (капілярного по Тасакі; вакуумного заповнення; заповнення спиртом з подальшим витісненням спирту по еквівалентній об'ємній характеристиці електролітом; заливка легкоплавкими сплавами як альтернатива рідким електролітам, що полегшує введення контакту хлорсрібного дроту). Нами пропонується конфігурація установки, що вирішує всі вищевказані проблеми шляхом введення інтерферометричного пристрою для мікроскопічного контролю мікроелектродів і мікроманіпулятора або мікроперфузора, вперше для даного типу оптичних приладів комбінованого з інтерферометричною оптичною схемою.

Посилання

Scarpelli EM, Mautone AJ. Surface biophysics of the surface monolayer theory is incompatible with regional lung function. Biophysical journal. 1994;67(3):1080-9. doi: 10.1016/S0006-3495(94)80573-9

Rutishauser U. Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. Journal of cellular biochemistry. 1998;70(3):304-12. doi: 10.1002/(SICI)1097-4644(19980901)70:3<304::AID-JCB3>3.0.CO;2-R

Beales PA. Biophysics: A toehold in cell surface dynamics. Nature Nanotechnology. 2017;12:404–6. doi: 10.1038/nnano.2017.20

Longsworth LG. Experimental Tests of an Interference Method for the Study of Diffusion. Journal of the American Chemical Society. 1947;69(10):2510-6. doi: 10.1021/ja01202a077

Kegeles G, Gosting LJ. The theory of an interference method for the study of diffusion. Journal of the American Chemical Society. 1947;69(10):2516-23. doi: 10.1021/ja01202a078

Gosting LJ, Hanson EM, Kegeles G., Morris MS. Equipment and experimental methods for inter-ference diffusion studies. Review of Scientific Instruments. 1949;20(3):209-15. doi: 10.1063/1.1741490

Gosting LJ, Morris MS. Diffusion studies on dilute aqueous sucrose solutions at 1 and 25 with the Gouy interference method. Journal of the American Chemical Society. 1949;71(6):1998-2006. doi: 10.1021/ja01174a028

Longsworth LG. Tests of Flowing Junction Diffusion Cells with Interference Methods. Review of Scientific Instruments. 1950;21(6):524-8. doi: 10.1063/1.1745641

Gosting LJ, Akeley DF. A Study of the Diffusion of Urea in Water at 25° with the Gouy Interference Method. Journal of the American Chemical Society. 1952;74(8):2058-60. doi: 10.1021/ja01128a060

Lyons MS, Thomas JV. Diffusion Studies on Dilute Aqueous Glycine Solutions at 1 and 25° with the Gouy Interference Method. Journal of the American Chemical Society. 1950;72(10):4506-11. doi: 10.1021/ja01166a047

Lyons PA, Sandquist CL. A study of the diffusion of n-butyl alcohol in water using the Gouy interference method. Journal of the American Chemical Society. 1953;75(16):3896-9. doi: 10.1021/ja01112a007

Gosting LJ, Onsager L. A general theory for the Gouy diffusion method. Journal of the American Chemical Society. 1952;74(23):6066-74. doi: 10.1021/ja01143a071

Chatterjee A. Diffusion Studies of Bovine Plasma Albumin at 25° with the Help of Jamin Interference Optics. Journal of the American Chemical Society.1964;86(18):3640-2. doi: 10.1021/ja01072a010

Chatterjee A. Measurement of the diffusion coefficients of sucrose in very dilute aqueous solutions using Jamin interference optics at 25. Journal of the American Chemical Society. 1964;86(5):793-5. doi: 10.1021/ja01059a009

Gueudré L, Binder T, Chmelik C, Hibbe F, Ruthven DM, Kärger J. Micro-imaging by interference microscopy: A case study of orientation-dependent guest diffusion in MFI-type zeolite host crystals. Materials. 2012;5(4):721-40. doi: 10.3390/ma5040721

Kärger J, Schemmert ULF., Vasenkov S. Application of interference microscopy – a novel route to study intracrystalline zeolitic diffusion. Adsorption Science and Technology: Proceedings of the Second Pacific Basin Conference on Adsorption Science and Technology: Brisbane, Australia, 14-18 May 2000. World Scientific, 2000:324. doi: 10.1142/9789812793331_0065.

Heinke L, Kortunov P, Tzoulaki D, Castro M, Wright PA, Kärger J. Three-dimensional diffusion in nanoporous hostguest materials monitored by interference microscopy. EPL (Europhysics Letters). 2007;81(2):26002. doi: 10.1209/0295-5075/81/26002

Gueudré L, Chmelik C, Kärger J. Diffusion anisotropy in a single crystal of silicalite-1 studied by interference microscopy. Diffusion Fundamentals. 2011;16:45.1-45.2

Heinke L, Kortunov P, Tzoulaki D, Kärger J. The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on na-noporous materials. Adsorption. 2007;13(3-4):215-23. doi: 10.1007/s10450-007-9048-y

Karge HG, Kärger J. Application of IR spectroscopy, IR microscopy, and optical interference microscopy to diffusion in zeolites. Adsorption and Diffusion. Springer Berlin Heidelberg, 2008:135-206.

Schemmert U, Kärger J, Weitkamp J. Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites. Microporous and Mesoporous Materials. 1999;32(1):101-10. doi: 10.1016/S1387-1811(99)00095-5

Geier O, Vasenkov S, Lehmann E, Kärger J, Rakoczy RA, Weitkamp J. 19-O-04-Interference microscopy as a tool of choice for investigating the role of crystal morphology in diffusion studies. Studies in Surface Science and Catalysis. 2001;135:154. doi: 10.1016/S0167-2991(01)81257-X

Kärger J, Heinke L, Kortunov P, Vasenkov S. Looking into the crystallites: diffusion studies by interference microscopy. Studies in Surface Science and Catalysis. 2007;170:739-47. doi: 10.1016/S0167-2991(07)80915-3

Lauerer A, Binder T, Haase J, Kärger J, Ruthven D.M. Diffusion of propene in DDR crystals studied by interference microscopy. Chemical Engi-neering Science. 2015;138:110-17.

Beran PŘE, Vojáčková S, Porsch B. Determination of the diffusion coefficients of T1+, As 3+, phenol, and quinolin-8-ol using the polarized light interference method. Journal of the Chemical Society, Chemical Communications. 1975;22:908a. doi: 10.1039/C3975000908A

Holmes DE, Gatos HC. Convective Interference and “Effective” Diffusion-Controlled Segregation during Directional Solidification under Stabilizing Vertical Thermal Gradients; Ge. Journal of The Electrochemical Society. 1981;128(2):429-37.

Brudney N, Saunders L. A study by the Gouy interference method of the diffusion in water of potassium laurate. Journal of the Chemical Society. 1955:2916-21. doi: 10.1039/JR9550002916

Pierobon M, Akyildiz IF. A statistical–physical model of interference in diffusion-based molecular nanonetworks. IEEE Transactions on communications. 2014;62(6):2085-95. doi: 10.1109/TCOMM.2014.2314650

Chertkov VG, Chalykh AY. Polarization-interference micromethod for the study of mutual diffusion in polymer systems. Polymer Bulletin. 1988;19(5):487-92. doi: 10.1007/BF00263919

Kozenkov VM, Belyaev VV, Tumovskii GD, Spakhov AA. Translational and Rotation Self-Diffusion in Polymeric Systems Including Photo-and Thermo-Polymerized Systems by an Interference-Holography Method and a Method of Photo-Induced Optical Anisotropy //Reaction Kinetics in Condensed Matter RKCM’10-Moscow:128. doi: 10.1.1.456.9766. Russian.

Taylor CV. The contractile vacuole in Euplotes: An example of the solgel reversibility of cytoplasm. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1923;37(3):259-89. doi: 10.1002/jez.1400370302

Bensley RR. Plasmosin. The geland fiber-forming constituent of the protoplasm of the hepatic cell. The Anatomical Record. 1938;72(3):351-69. doi: 10.1002/ar.1090720308

Seifriz W. Solgel transformation of protoplasm. Revue d'hematologie. 1949;5(5-6):591-602.

Reiner JM. A proposed mechanism for the solgel transformations. The Bulletin of Mathematical Biophysics. 1965;27(1):105-112. doi: 10.1007/BF02477266

Munder MC, Midtvedt D, Franzmann TM, Nueske E, Malinovska L, Otto O. A solgel transition of the cytoplasm driven by adaptive intracellular pH changes promotes entry into dormancy. Molecular Biology Of The Cell. 2015;26:8120.

Kondo H. Ultrastructural consideration on the nature, sol and gel, of the aqueous cytoplasm in embedment-free section electron microscopy. Ad-vances in colloid and interface science. 2010;160(1):49-55. doi: 10.1016/j.cis.2010.07.003

Martínez-Cancino R, Sotero RC. Modeling the effect of cytoplasm solgel transitions on magnetization changes during MRI diffusion experi-ments in brain gray matter // International Journal of Bioelectromagnetism. 2008;10(4):269-80.

Lewin RA. Sol-to-gel changes in the proto-plasm of prokaryotic algae. Algological Studies / Archiv für Hydrobiologie. 1994;1:67-71.

Janmey PA. Gelsol transition of the cytoplasm and its regulation. AIP Conference Proceed-ings. 1991;226(1):304-25. doi: 10.1063/1.40599

Luby-Phelps K. The Cytoplasm of Living Cells as a Reversible Gel Network. Physical Networks: Polymers and gels. 1990:345 p.

Nilsson L. Å. Qualitative analysis of acute phase protein antisera with the comparative interference diffusion-in-gel technique. International Archives of Allergy and Immunology. 1968;33(1):16-28.

Koyuncu I, Brant J, Lüttge A, Wiesner MR. A comparison of vertical scanning interferometry (VSI) and atomic force microscopy (AFM) for characterizing membrane surface topography. Journal of Membrane Science. 2006;278(1):410-7. doi: 10.1016/j.memsci.2005.11.039

Farinas J, Verkman AS. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophysical journal. 1996;71(6):3511-22. doi: 10.1016/S0006-3495(96)79546-2

Haruna M, Yoden K, Ohmi M, Seiyama A. Detection of phase transition of a biological membrane by precise refractive-index measurement based on the low coherence interferometry. Proc. SPIE. 2000;3915:188-93. doi: 10.1117/12.384155

Honglin M, Zhihao Q. [Stretching Deformation Analysis of Biology Membrane Material by Interferometry Phaseshift Method]. Journal of Nanjing Normal University (Natural Science Edition). 2009;32(03):42-6. Chinese.

Zilker A, Engelhardt H, Sackmann E. Dynamic reflection interference contrast (RIC-) microscopy: a new method to study surface excitations of cells and to measure membrane bending elastic moduli. Journal De Physique. 1987;48(12):2139-51. doi: 10.1051/jphys:0198700480120213900

Lambacher A, Fromherz P. Orientation of hemicyanine dye in lipid membrane measured by fluorescence interferometry on a silicon chip. The Journal of Physical Chemistry B. 2001;105(2):343-6. doi: 10.1021/jp002843i

Chupa JA, McCauley JP, Strongin RM, Smith AB, Blasie JK, Peticolas LJ, Bean JC. Vecto-rially oriented membrane protein monolayers: profile structures via X-ray interferometry/holography. Biophysical journal. 1994;67(1):336-48. doi: 10.1016/S0006-3495(94)80486-2

Gupta S, Dura JA, Freites JA, Tobias DJ, Blasie JK. Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry. Langmuir. 2012;28(28):10504-20. doi: 10.1021/la301219z

Izzard CS, Lochner LR. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. Journal of cell science. 1976;21(1):129-59.

Baksh MM, Kussrow AK, Mileni M, Finn MG, Bornhop DJ. Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nature biotechnology. 2011;29(4):357-60. doi: 10.1038/nbt.1790

Baksh MM, Lockwood A, Richards C, Finn MG, Heidary D. Label-Free Molecular Observations of Membrane-Associated Species using Backscatter-ing Interferometry. Biophysical Journal. 2015;108(2):617a.

Gerhart J, Haddad-Weiser G, Kussrow A, Bornhop D, Flowers R, Thévenin D. Backscattering Interferometry: Seeing Membrane Proteins in a New Light. Biophysical Journal. 2015;108(2):253a.

Payne JA, Lee TH, Anderson MA, Aguilar MI. Examination of the Interaction between a Membrane Active Peptide and Artificial Bilayers by Dual Polarisation Interferometry. Bioprotocol. 2017;7(1):e2087. doi: 10.21769/BioProtoc.2087

Hirn R, Bayerl TM, Rädler JO, Sackmann E. Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferometry. Faraday discussions. 1999;111:17-30. doi: 10.1039/A807883A

Dana KJ. Three dimensional reconstruction of the tectorial membrane: an image processing method using Nomarski differential interference contrast microscopy (Doctoral dissertation, Massachusetts Institute of Technology). MIT, 1992, 96 p.

Barroca T, Bon P, Lévêque-Fort S, Fort E. Supercritical self-interference fluorescence microscopy for full-field membrane imaging. Proc. SPIE. 2013:858911. doi: 10.1117/12.2003736

Gandorfer A, Scheler R, Schumann R, Haritoglou C, Kampik A. Interference microscopy delineates cellular proliferations on flat mounted internal limiting membrane specimens. British Journal of Ophthalmology. 2009;93(1):120-2. doi: 10.1136/bjo.2008.146514

Erokhova LA, Novikov SM, Lazarev GL, Kazakova TA, Orlov DA, Indukaev KV, Maksimov GV. [Study of regular intracellular and membrane processes in neurons by laser interference microscopy]. Bulletin of experimental biology and medicine. 2005;140(2):262-4. doi: 10.1007/s10517-005-0461-5. Russian.

Wilson AD. Inplane displacement of a stressed membrane with a hole measured by holographic interferometry. Applied optics. 1971;10(4):908-12. doi: 10.1364/AO.10.000908

Röhler R, Sieger C. Analysis of asymmetrical membrane vibrations by holographic interferometry. Optics Communications. 1978.25(3):297-300. doi: 10.1016/0030-4018(78)90132-3

Ghislain LP, Webb WW. Force and membrane compliance measurements using laser interferometry and optical trapping. Proc. SPIE (Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III). 1993;1889:212-4. doi: 10.1117/12.155726

Cheung DCL, Barnes TH, Haskell TG. Feedback interferometry with membrane mirror for adaptive optics. Optics communications. 2003;218(1):33-41. doi: 10.1016/S0030-4018(03)01188-X

Kaizuka Y, Groves JT. Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy. Physical review letters. 2006;96(11):118101. doi: 10.1103/PhysRevLett.96.118101

Eom J, Park SJ, Lee BH. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry. Journal of biomedical optics. 2015;20(10):106007. doi: 10.1117/1.JBO.20.10.106007

Pande P, Shelton RL, Monroy GL, Nolan RM, Boppart SA. A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry.Journal of the Association for Research in Otolaryngology. 2016;17(5):403-16. doi: 10.1007/s10162-016-0576-6

Hernandez-Montes MDS, Santoyo FM, Munoz S, Perez C, de la Torre M, Flores M, Alvarez, L. Surface strainfield determination of tympanic membrane using 3D-digital holographic interferometry. Optics and Lasers in Engineering, 2015;71:42-50. doi: 10.1016/j.optlaseng.2015.03.008

Kimura Y. [Experimental study of the vibration analysis of tympanic membrane by holographic interferometry]. Nippon Jibiinkoka Gakkai Kaiho. 1981;84(8):880-9. Japan.

del Socorro Hernández-Montes M, Solis SM, Santoyo FM. 3-D Digital holographic interferometry as a tool to measure the tympanic membrane motion. Proc. SPIE. 2012;8413:A-1-A-6. doi: 10.1117/12.978227

O'Neill MP, Bearden A. The amplitude and phase of basilar membrane motion in the turtle measured with laser-feedback interferometry. Bio-physics of Hair Cell Sensory Systems. World Scien-tific Singapore, 1993;398-405.

Watanabe H, Kysar JW, Lalwani AK.. Microanatomic analysis of the round window membrane by white light interferometry and microcomputed tomography for mechanical amplification. Otology & Neurotology. 2014;35(4):672-8.

King-Smith P, Fink BA, Nichols JJ, Nichols KK, Hill RM, Markakis GA. In vivo Measurement of the Thickness of Human Corneal Endothelium and Descemet's Membrane Using Interferometry. Investigative Ophthalmology & Visual Science. 2002;43(13):157.

O'Brien RN, Zhao B. A new optical liquid membrane study technique: I. Use of holographic interferometry to obtain the refractive index of liquid membrane components. Journal of membrane science. 1984;20(3):297-304. doi: 10.1016/S0376-7388(00)82006-2

Levy D, Weiser K. Use of a laser beam in-terference technique for the determination of the minority carrier diffusion length in layers of a p-n junction. Applied physics letters. 1995;66(14):1788-90. doi: 10.1063/1.113322

Kim H, Patel BS, Kegeles G. Interference optical studies of restricted diffusion. The Journal of Physical Chemistry. 1962;66(10):1960-6. doi: 10.1021/j100816a035

Marucci M, Pettersson SG, Ragnarsson G, Axelsson A. Determination of a diffusion coefficient in a membrane by electronic speckle pattern interferometry: a new method and a temperature sensitivity study. Journal of Physics D: Applied Physics. 2007;40(9):2870-80. doi: 10.1088/0022-3727/40/9/031

Hook L, Davis WW, Kotin L. High-Speed Calculation of Diffusion Coefficients from Rayleigh Interference Fringes. Applied Optics. 1963;2(1):65-6. doi: 10.1364/AO.2.000066

Seufert WD, O'Brien RN. Determination of diffusion coefficients from the progression of interference fringes. The Journal of Physical Chemistry. 1984;88(5):829-32. doi: 10.1021/j150649a001

He M, Guo Y, Zhong Q, Zhang Y. A New Method of Processing Mach–Zehnder Interference Fringe Data in Determination of Diffusion Coefficient. International Journal of Thermophysics. 2009;30(6):1823-37. doi: 10.1007/s10765-009-0685-0

Vasil'eva VI, Shaposhnik VA, Grigorchuk OV, Petrunya IP. The membrane–solution interface under high-performance current regimes of electrodialysis by means of laser interferometry. Desalination. 2006;192(1-3):408-14. doi: 10.1016/j.desal.2005.06.055

Mahlab D, Yosef NB, Belfort G. Intrinsic membrane compaction and aqueous solute studies of hyperfiltration (reverse-osmosis) membranes using interferometry. ACS Symposium Series 1981;153:147–58 doi: 10.1021/bk-1981-0153.ch010

Fernández-Sempere J, Ruiz-Beviá F, Salcedo-Díaz R, García-Algado P. Diffusion studies in polarized reverse osmosis processes by holographic interferometry. Optics and Lasers in Engineering. 2008;46(12):877-87. doi: 10.1016/j.optlaseng.2008.02.004

Fernández-Sempere J, Ruiz-Beviá F, Salcedo-Díaz R, Garcia-Algado P. Measurement of concentration profiles by holographic interferometry and modelling in unstirred batch reverse osmosis. Industrial & engineering chemistry research. 2006;45(21):7219-31. doi: 10.1021/ie060417z

Fernández-Sempere J, Ruiz-Beviá F, García-Algado P, Salcedo-Díaz R. Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interfer-ometry. Desalination. 2010;257(1):36-45. doi: 10.1016/j.desal.2010.03.010

Fernández-Sempere J, Ruiz-Beviá F, Salcedo-Díaz R, García-Algado P. Buoyancy effects in deadend reverse osmosis: visualization by holographic interferometry. Industrial & engineering chemistry research. 2007;46(6):1794-802. doi: 10.1021/ie061433z

Fernández Sempere J. et al. Visualization by digital holographic interferometry of flux velocity effect in cross-flow reverse osmosis. Póster presentado en 11th Mediterranean Congress of Chemical Engineering, Barcelona, October 21-24, 2008. http://rua.ua.es/dspace/handle/10045/15257

Xu Q, Tian W, You Z, Xiao J. Multiple beam interference model for measuring parameters of a capillary. Applied optics. 2015;54(22):6948-54. doi: 10.1364/AO.54.006948

Zhang Y, Xu M, Tian W, Xu Q, Xiao J. Analysis of three-dimensional interference patterns of an inclined capillary. Applied optics. 2016;55(22):5936-44. doi: 10.1364/AO.55.005936

Rosenwald SE, Nowall WB, Dontha N, Kuhr WG. Laser interference pattern ablation of a carbon fiber microelectrode: Biosensor signal enhancement after enzyme attachment. Analytical chemistry. 2000;72(20):4914-20.

Qi SW, Liu AP, Lu HG. Research on the method of measurement of nonlinear refractive index of optical materials by interference of capillary. Advanced Materials Research. 2012;490:3468-71. doi: 10.4028/www.scientific.net/AMR.490-495.3468

Qi S, Liu Y, Yang X, Xu T, Chen G, Zhang C, Tian J. Measurement of nonlinear refractive index of ethyl red by interference of capillary. Optics Communications. 2008;281(23):5902-4. doi: 10.1016/j.optcom.2008.08.044

Nisi H. Measurement of Capillary Constants of Viscous Liquids by Means of Interference Fringes. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series. 1919;1(3):40-2. doi: 10.11429/ppmsj1919.1.3_40

Kubota M. Interference effects in a capillary arc excitation source for emission spectrometry. Analytica Chimica Acta. 1978;96(1):55-62. doi: 10.1016/S0003-2670(01)93395-1

Deng Y, Li B. Oncolumn refractive-index detection based on retroreflected beam interference for capillary electrophoresis. Applied optics. 1998;37(6):998-1005. doi: 10.1364/AO.37.000998

Jicun R, Yanzhuo D, Jieke C. [Separation and Determination of Polylols by High-performance Capillary Electrophoresis With Laser-based Interference Refractive Index Detector]. Chinese Journal of Analytical Chemistry. 1993;21(12):1374-7. Chinese.

Peng W, Liu Y, Zhang X, Cheng F, Han M. High sensitivity evanescent field refractometer based on modal interference in micro-capillary wall. IEEE Sensors Journal. 2014;14(2):430-5. doi: 10.1109/JSEN.2013.2283972

Sørensen HS, Larsen NB, Latham JC, Bornhop DJ, Andersen PE. Highly sensitive bio-sensing based on interference from light scattering in capillary tubes. Applied physics letters. 2006;89(15):151108. doi: 10.1063/1.2356380

Sonehara T, Kojima K, Irie T. Fluorescence correlation spectroscopy excited with a stationary interference pattern for capillary electrophoresis. Analytical chemistry. 2002;74(19):5121-31. doi: 10.1021/ac0201326

Xiong B, Miao X, Zhou X, Deng Y, Zhou P, Hu J. Simultaneous coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis. Journal of Chromatog-raphy A. 2008;1209(1):260-6. doi: 10.1016/j.chroma.2008.09.042

##submission.downloads##

Опубліковано

2017-12-22

Номер

Розділ

Статті