Структурно-функціональні особливості кісткової тканини та їх значення для остеорегенерації
DOI:
https://doi.org/10.26641/1997-9665.2025.1.13-22Ключові слова:
кісткова тканина, остеорегенерація, ремоделювання.Анотація
Мета – дослідити структурно-функціональних особливостей кісткової тканини та їх значення для остеорегенерації. Для досягнення поставленої мети нами було опрацьовано джерела наукової медичної вітчизняної та світової літератури. Результати. Кісткова тканина є композитним матеріалом, з мінеральними кристалами, вбудованими в колагенову матрицю, а її механічні властивості залежать від взаємодії між цими компонентами. Кістка здатна до оновлення упродовж життя, адаптуючись до внутрішніх та зовнішніх факторів, а вікова перебудова впливає на її механічні властивості. Найпоширенішим білком у кістковому матриксі є колаген I типу, який утворює структуру потрійної спіралі, що забезпечує структурну підтримку та механічну міцність. Неколагенові білки складають приблизно 10-15% від загального вмісту білків у кістковій тканині та беруть участь у мінералізації, ремоделюванні та клітинній сигналізації, а також регулюють активність остеобластів та остеокластів. До основних неколагенових білків належать остеокальцин, остеонектин, остеопонтин, кістковий сіалопротеїн та інші. Разом ці білки утворюють високоорганізовану та динамічну структуру, яка підтримує механічні властивості кістки та керує складними процесами формування, підтримки та її ремоделювання. Неорганічний компонент кістки переважно складається з мінералів, серед яких найбільш важливими є кальцій і фосфат. Ці мінерали утворюють кристали гідроксиапатиту (Ca₁₀(PO₄)₆(OH)₂), які вбудовані в колагеновий матрикс кістки. Присутність гідроксиапатиту необхідна не тільки для підтримки структурної цілісності кістки, але й для полегшення ключових регенеративних процесів, таких як остеоіндукція та остеокондукція. Складна взаємодія між остеобластами, остеокластами та іншими регуляторними факторами гарантує, що кістки залишаються функціональними та міцними, реагуючи на потреби росту, старіння та механічні навантаження, запобігаючи при цьому патологіям, пов'язаним з дисбалансом кісткового ремоделювання. Підсумок. Підсумовуючи наукову літературу виявлено певні суперечності щодо розуміння структурно-функціональних варіацій реконструкції кісткової тканини при різних клінічних сценаріях. Значна кількість наукових праць як експериментальних, так і клінічних присвячена дослідженню остеорегенерації, проте в сучасних умовах особливого значення набувають вірні уявлення про послідовність і часові рамки остеогенетичних регенераторних процесів. Тому виправданим є прагнення до вивчення динаміки гістоархітектурних перебудов, що відбуваються під час загоєння кісткових дефектів, що дозволить розробляти персоналізовані стратегії остеорегенерації, адаптовані до потреб конкретного пацієнта.
Посилання
Pennycook SJ. Structure determination through Z-contrast microscopy. Advances in Imag-ing and Electron Physics. 2002;123:173-206. https://doi.org/10.1016/S1076-5670(02)80063-5.
Wenk H-R, Heidelbach F. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone. 1999;24(4):361-9. https://doi.org/10.1016/S8756-3282(98)00192-6.
Schwarcz HP, Binkley DM, Luo L, Grand-field K. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumina-tion. Bone. 2020;135:115304. https://doi.org/ 10.1016/j.bone.2020.115304.
Rho J-Y, Kuhn-Spearing L, Zioupos P. Me-chanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92-102. https://doi.org/10.1016/S1350-4533(98)00007-1.
Buss DJ, Reznikov N, McKee MD. Crossfi-brillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J Struct Biol. 2020;212(2):107603. https://doi.org/ 10.1016/j.jsb.2020.107603.
Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP. Calcospheru-lites11Calcospherulites (calco: calcium salt+spherulite: spherical crystalline body); calcium-containing, spherical bodies have also been referred to as calcified microspheres, mineral clusters, crystal ghost aggregates, calcification nodules. Bone. 2007;41(6):1005-16. https://doi.org/ 10.1016/j.bone.2007.08.036.
McKee MD, Buss DJ, Reznikov N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J Struct Biol. 2022;214(1):107823. https://doi.org/10.1016/j.jsb.2021.107823.
Binkley DM, Deering J, Yuan H, Gourrier A, Grandfield K. Ellipsoidal mesoscale mineralization pattern in human cortical bone revealed in 3D by plasma focused ion beam serial sectioning. J Struct Biol. 2020;212(2):107615. https://doi.org/10.1016/ j.jsb.2020.107615.
Clarke B. Normal bone anatomy and physi-ology. Clinical Journal of the American Society of Nephrology. 2008;3:S131-9. https://doi.org/10.2215/ CJN.04151206.
Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism. Radionu-clide and Hybrid Bone Imaging. Berlin, Heidelberg : Springer; 2012:29-57. https://doi.org/10.1007/978-3-642-02400-9_2.
Fratzl P, Weinkamer R. Nature’s hierar-chical materials. Prog Mater Sci. 2007;52(8):1263-334. https://doi.org/10.1016/j.pmatsci.2007.06.001.
Reznikov N, Shahar R, Weiner S. Bone hi-erarchical structure in three dimensions. Acta Bio-mater. 2014;10(9):3815-26. https://doi.org/10.1016/ j.actbio.2014.05.024.
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen bio-mineralization. J Struct Biol. 2013;183(2):258-69. https://doi.org/10.1016/j.jsb.2013.04.003.
Reznikov N, Shahar R, Weiner S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone. 2014;59:93-104. https://doi.org/10.1016/j.bone.2013.10.023.
Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021;9(1):25. https://doi.org/10.1038/s41413-021-00142-4.
Guntur AR, Rosen CJ. Bone as an endo-crine organ. Endocrine Practice. 2012;18(5):758-62. https://doi.org/10.4158/EP12141.RA.
Cowin S, Telega J. Bone Mechanics. Appl Mech Rev. 2003;56(4):B61-3. https://doi.org/ 10.1115/1.1579463.
Feng X. Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Dis-ease. Curr Chem Biol. 2009;3(2):189-96. https://doi.org/10.2174/187231309788166398.
Lü X, Wang J, Li B, Zhang Z, Zhao L. Gene expression profile study on osteoinductive effect of natural hydroxyapatite. J Biomed Mater Res A. 2014;102(8):2833-41. https://doi.org/10.1002/jbm.a.34951.
Albrektsson T, Johansson С. Osteoinduc-tion, osteoconduction and osseointegration. Euro-pean Spine Journal. 2001;10:S96-101. https://doi.org/ 10.1007/s005860100282.
Florencio-Silva R, Sasso GR da S, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1-17. https:// doi.org/10.1155/2015/421746.
Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells. 2023;12(21):2576. https://doi.org/10.3390/ cells12212576.
Shah FA, Ruscsák K, Palmquist A. Trans-formation of bone mineral morphology: From dis-crete marquise-shaped motifs to a continuous inter-woven mesh. Bone Rep. 2020;13:100283. https://doi.org/ 10.1016/j.bonr.2020.100283.
Wang Q, Tang T, Cooper D, Eltit F, Fratzl P, Guy P, et al. Globular structure of the hypermineral-ized tissue in human femoral neck. J Struct Biol. 2020;212(2):107606. https://doi.org/10.1016/j.jsb.2020.107606.
Maria R, Ben-Zvi Y, Rechav K, Klein E, Shahar R, Weiner S. An unusual disordered alveolar bone material in the upper furcation region of mini-pig mandibles: A 3D hierarchical structural study. J Struct Biol. 2019;206(1):128-37. https://doi.org/ 10.1016/j.jsb.2019.02.010.
Burnett TL, Kelley R, Winiarski B, Contre-ras L, Daly M, Gholinia A, et al. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. 2016;161:119-29. https://doi.org/10.1016/j.ultramic.2015.11.001.
Midgley PA, Weyland M. 3D electron mi-croscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultrami-croscopy. 2003;96(3-4):413-31. https://doi.org/10.1016/ S0304-3991(03)00105-0.
Möbus G, Inkson BJ. Nanoscale tomogra-phy in materials science. Materials Today. 2007;10(12):18-25. https://doi.org/10.1016/S1369-7021(07)70304-8.
Addison WN, Nelea V, Chicatun F, Chien Y-C, Tran-Khanh N, Buschmann MD, et al. Extra-cellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: An ultrastructural, composition-al and comparative analysis with mouse bone. Bone. 2015;71:244-56. https://doi.org/10.1016/j.bone.2014.11.003
Weiner S, Traub W. Organization of hy-droxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206(2):262-6. https://doi.org/10.1016/0014-5793(86)80993-0.
Arsenault AL. A comparative electron mi-croscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. Bone Miner 1989;6(2):165-77. https://doi.org/ 10.1016/0169-6009(89)90048-2
Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39-54. https://doi.org/10.1006/jsbi.1993.1003
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20(1):781-810. https://doi.org/ 10.1146/annurev.cellbio.20.010403.113126.
Mackie EJ. Osteoblasts: novel roles in or-chestration of skeletal architecture. Int J Biochem Cell Biol. 2003;35(9):1301-5. https://doi.org/ 10.1016/S1357-2725(03)00107-9.
Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349-55. https://doi.org/10.1038/nature01660.
Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. https://doi.org/10.3390/cells9092073.
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27-38. https://doi.org/10.1038/ nrm3254.
Feng X, McDonald JM. Disorders of Bone Remodeling. Annual Review of Pathology: Mecha-nisms of Disease. 2011;6(1):121-45. https:// doi.org/10.1146/annurev-pathol-011110-130203.
Schaffler MB, Kennedy OD. Osteocyte sig-naling in bone. Curr Osteoporos Rep. 2012;10(2):118-25. https://doi.org/10.1007/s11914-012-0105-4.
Bonewald LF. Establishment and charac-terization of an osteocyte-like cell line, MLO-Y4. J Bone Miner Metab. 1999;17(1):61-5. https://doi.org/ 10.1007/s007740050066.
Plotkin LI, Manolagas SC, Bellido T. Transduction of Cell Survival Signals by Connexin-43 Hemichannels. Journal of Biological Chemistry. 2002;277(10):8648-57. https://doi.org/10.1074/jbc.M108625200.
Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115-37. https://doi.org/ 10.1210/edrv.21.2.0395.
Plotkin LI, Aguirre JI, Kousteni S, Mano-lagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. Journal of Biological Chemistry. 2005;280(8):7317-25. https://doi.org/10.1074/ jbc.M412817200.
Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Bio-phys Res Commun. 2005;328(3):709-20. https:// doi.org/10.1016/j.bbrc.2004.11.072.
Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM. Osteocyte differentia-tion is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Ma-ter. 2013;28:183-94. https://doi.org/10.1016/ j.jmbbm.2013.06.013.
Franz‐Odendaal TA, Hall BK, Witten PE. Buried alive: How osteoblasts become osteocytes. Developmental Dynamics. 2006;235(1):176-90. https://doi.org/10.1002/dvdy.20603.
Yang F, Tang W, So S, de Crombrugghe B, Zhang C. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Bio-phys Res Commun. 2010;400(4):684-8. https:// doi.org/10.1016/j.bbrc.2010.08.128.
Rho J, Takami M, Choi Y. Osteoimmunol-ogy: interactions of the immune and skeletal sys-tems. Mol Cells. 2004;17(1):1-9.
Tresguerres FGF, Torres J, López-Quiles J, Hernández G, Vega JA, Tresguerres IF. The osteo-cyte: A multifunctional cell within the bone. Annals of Anatomy - Anatomischer Anzeiger. 2020;227:151422. https://doi.org/10.1016/ j.aanat.2019.151422.
Ducy P, Schinke T, Karsenty G. The Osteo-blast: A Sophisticated Fibroblast under Central Sur-veillance. Science. (1979) 2000;289(5484):1501-4. https://doi.org/10.1126/science.289.5484.1501.
Young B, Lowe JS, Stevens A, Heath JW, Deakin PJ. Wheater’s functional histology: A text and colour atlas, 5th Edition. London: Churchill Livingstone; 5th edition; 2006.
Teitelbaum SL. Bone resorption by osteo-clasts. Science. 2000;289(5484):1504-8. https:// doi.org/10.1126/science.289.5484.1504.
Maggiano CM, Maggiano IS, Tiesler VG, Chi‐Keb JR, Stout SD. Methods and theory in bone modeling drift: comparing spatial analyses of pri-mary bone distributions in the human humerus. J Anat. 2016;228(1):190-202. https://doi.org/10.1111/joa.12383.
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10(1):48. doi: 10.1038/s41413-022-00219-8.
Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol. 2003;41(3):182-5. https://doi.org/ 10.1002/mpo.10334.
Parfitt AM. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 2002;30(6):807-9. https://doi.org/10.1016/ S8756-3282(02)00735-4.
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797-855. https://doi.org/10.1152/physrev.00012.2019.
Zioupos P, Kirchner HOK, Peterlik H. Age-ing bone fractures: The case of a ductile to brittle transition that shifts with age. Bone. 2020;131:115176. https://doi.org/10.1016/j.bone.2019.115176.
Yokota K, Sato K, Miyazaki T, Aizaki Y, Tanaka S, Sekikawa M, et al. Characterization and function of tumor necrosis factor and interleukin‐6-induced osteoclasts in rheumatoid arthritis. Arthritis & Rheumatology. 2021;73(7):1145-54. https:// doi.org/10.1002/art.41666.
Takeuchi T, Yoshida H, Tanaka S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun Rev. 2021;20(9):102884. https://doi.org/10.1016/j.autrev.2021.102884.
Johannesdottir F, Putman MS, Burnett-Bowie S-AM, Finkelstein JS, Yu EW, Bouxsein ML. Age-related changes in bone density, microarchitec-ture, and strength in postmenopausal black and white women: The SWAN longitudinal HR-pQCT study. Journal of Bone and Mineral Research. 2020;37(1):41-51. https://doi.org/10.1002/ jbmr.4460.
Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85-93. https://doi.org/10.1016/j.bone.2018.10.010.
Alvarenga JC, Caparbo VF, Domiciano DS, Pereira RMR. Age-related reference data of bone microarchitecture, volumetric bone density, and bone strength parameters in a population of healthy Brazilian men: an HR-pQCT study. Osteoporosis International. 2022;33(6):1309-21. https://doi.org/10.1007/ s00198-021-06288-5.
Sherk VD, Rosen CJ. Senescent and apop-totic osteocytes and aging: Exercise to the rescue? Bone. 2019;121:255-8. https://doi.org/10.1016/ j.bone.2019.02.006.
Ding P, Gao C, Gao Y, Liu D, Li H, Xu J, et al. Osteocytes regulate senescence of bone and bone marrow. Elife. 2022;11. https://doi.org/10.7554/ eLife.81480.
Zhang Y, Chen C, Liu Y, Rao S, Tan Y, Qi-an Y, et al. Neuronal induction of bone‐fat imbal-ance through osteocyte neuropeptide Y. Advanced Science. 2021;8(24). https://doi.org/10.1002/ advs.202100808.
Eckhardt BA, Rowsey JL, Thicke BS, Fra-ser DG, O’Grady KL, Bondar OP, et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight. 2020;5(9). https://doi.org/10.1172/jci.insight.135236.
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev. 2022;77:101608. https://doi.org/10.1016/j.arr.2022.101608.
Kassem M, Marie PJ. Senescence‐associated intrinsic mechanisms of osteoblast dys-functions. Aging Cell. 2011;10(2):191-7. https://doi.org/10.1111/ j.1474-9726.2011.00669.x.
Kim H, Chang J, Shao L, Han L, Iyer S, Manolagas SC, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell. 2017;16(4):693-703. https://doi.org/10.1111/ acel.12597.
Geng Q, Gao H, Yang R, Guo K, Miao D. Pyrroloquinoline quinone prevents estrogen defi-ciency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Int J Biol Sci. 2019;15(1):58-68. https://doi.org/10.7150/ijbs.25783.
Wang X, Honda Y, Zhao J, Morikuni H, Nishiura A, Hashimoto Y, et al. Enhancement of bone-forming ability on beta-tricalcium phosphate by modulating cellular senescence mechanisms us-ing senolytics. Int J Mol Sci. 2021;22(22):12415. https://doi.org/10.3390/ijms222212415.
Donnelly E. Methods for assessing bone quality: A review. Clin Orthop Relat Res. 2011;469(8):2128-38. https://doi.org/10.1007/ s11999-010-1702-0.
Bouxsein ML. Bone quality: Where do we go from here? Osteoporosis International. 2003;14:118-27. https://doi.org/10.1007/s00198-003-1489-x.
Genant HK, Engelke K, Prevrhal S. Ad-vanced CT bone imaging in osteoporosis. Rheuma-tology. 2008;47(Sup 4):iv9-16. https://doi.org/10.1093/ rheumatology/ken180.
Gordon CL, Lang TF, Augat P, Genant HK. Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteopo-rosis International. 1998;8(4):317-25. https://doi.org/ 10.1007/s001980050070.
Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. Journal of Bone and Mineral Research. 2009;24(9):1565-71. https:// doi.org/10.1359/jbmr.090414.
Hasegawa H, Nango N, Machida M. Eval-uation of trabecular microstructure of cancellous bone using quarter-detector computed tomography. Diagnostics. 2023;13(7):1240. https://doi.org/10.3390/diagnostics13071240.
Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, et al. Biological basis of bone strength: anatomy, physiology and measure-ment. J Musculoskelet Neuronal Interact. 2020;20(3):347-71.
Krugh M, Langaker MD. Dual-Energy X-Ray Absorptiometry. Treasure Island (FL): StatPearls Publishing; 2024.
Di Leo C, Tarolo GL, Bestetti A, Tagliabue L, Del Sole A, Aliberti G, et al. [Osteoporosis and phytoestrogens: an assessment of bone mineral density via quantitative peripheral computed to-mography in milk-egg-vegetarian women in the premenopause]. Radiol Med. 2000;99(4):250-7.
Di Leo C, Tarolo GL, Bagni B, Bestetti A, Tagliabue L, Pietrogrande L, et al. Peripheral quanti-tative computed tomography (PQCT) in the evalua-tion of bone geometry, biomechanics and mineral density in postmenopausal women. Radiol Med. 2002;103(3):233-41.
Golding PH. Dual-energy X-ray absorp-tiometry (DXA) to measure bone mineral density (BMD) for diagnosis of osteoporosis - experimental data from artificial vertebrae confirms significant dependence on bone size. Bone Rep. 2022;17:101607. https://doi.org/10.1016/j.bonr.2022.101607.
Yu W, Zhang Z, Pan W, Guan W, Lin Q, Xia W, et al. Comparison of differences in bone mineral density measurement with 3 hologic dual-energy X-Ray absorptiometry scan modes. Journal of Clinical Densitometry. 2021;24(4):645-50. https://doi.org/ 10.1016/j.jocd.2021.01.003.
Hoyer-Kuhn H, Knoop K, Semler O, Kuhr K, Hellmich M, Schoenau E, et al. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Chil-dren. Journal of Clinical Densitometry. 2016;19(2):208-15. https://doi.org/10.1016/j.jocd.2015.04.006.
Crowder CM, Dominguez VM. Bone: His-tological analysis. Encyclopedia of Global Archae-ology, New York : Springer; 2014:978-85. https:// doi.org/10.1007/978-1-4419-0465-2_151.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative commons Attribution 4.0 International (CC BY 4.0), яка дозволяє іншим особам вільно поширювати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи в цьому журналі.
Автори, направляючи рукопис до редакції журналу «Morphologia», погоджуються з тим, що редакції передаються права на захист і використання рукопису (переданого до редакції матеріалу, в тому числі таких об'єктів, що охороняються авторським правом, як фотографії автора, малюнки, схеми, таблиці і т.п.), в тому числі на відтворення в пресі і в мережі Інтернет; на поширення; на переклад рукопису на будь-які мови; експорту та імпорту примірників журналу зі статтею Авторів з метою поширення, доведення до загального відома. Зазначені вище права Автори передають Редакції без обмеження терміну їх дії і на території всіх країн світу без обмеження.
Автори гарантують, що вони мають виняткові права на використання матеріалів, переданих до редакції. Редактори не несуть відповідальності перед третіми особами за порушення гарантії, надані авторами. Розглянуті права передаються до редакції з моменту підписання поточної публікації для публікації. Відтворення матеріалів, опублікованих в журналі іншими особами та юридичними особами, можливе лише за згодою редакції, з обов'язковим зазначенням повної бібліографічного посилання первинної публікації. Автори залишають за собою право використовувати опублікований матеріал, його фрагменти і частини для навчальних матеріалів, усні презентації, підготовку дисертації дисертації з обов'язковою бібліографічною посиланням на оригінальну роботу. Електронна копія опублікованій статті, що завантажується з офіційного веб-сайту журналу в форматі .pdf, може бути розміщена авторами на офіційному веб-сайті їх установ, будь-яких інших офіційних ресурсах з відкритим доступом.