Вплив цукрового діабету на міокард на етапах пренатального кардіогенезу (огляд літератури)

Автор(и)

  • Є.В. Фролікова Дніпровський державний медичний університет, Україна

Ключові слова:

міокард, цукровий діабет, гестаційний діабет, кардіогенез, алоксанова модель, гестаційна ембріопатія

Анотація

Актуальність. Діабет це серйозне хронічне захворювання, яке виникає внаслідок недостатньої кількісті інсуліну, або його неефективності. Діабет є важливою проблемою охорони здоров'я, однією з чотирьох пріоритетних неінфекційних хвороб у світі. І кількість випадків, і поширеність діабету за останні кілька десятиліть неухильно зростає. Кількість смертей від його ускладнень перевищує загальну кількість людей, які померли від СНІДу, туберкульозу і малярії. У 2019 році діабет став безпосередньою причиною смерті 1,5 мільйонів людей. А в період з 2019 по 2020 рік ця цифра зросла ще на 15%. За даними World Health Organization, кожна третя людини у світі має переддіабет, а кожна 10 людина хворіє на цукровий діабет. У країнах з низьким та середнім рівнем доходу поширеність діабету зростає набагато швидше, ніж провідних країнах світу. Мета. Провести аналіз теоретичної та практичної інформації, яка доводить вплив цукрового діабету на розвиток серця та його морфологічну структуру. Методи. Ретроспективна обробка інформаційних джерел, в яких вивчається вплив цукрового діабету на розвиток міокарда. Результати та висновки. Аналіз джерел виявив ряд змін у структурі міокарда, під впливом цукрового діабету. У дітей від діабетичних матерів спостерігається порушення мікроциркуляції, поліморфізм ядер кардіоміоцитів, явища цитолізу, дезорієнтація, хвилеподібна деформація і фрагментація волокон кардіоміоцитів, набухання строми міокарда і локальний фіброз з осередкової клітинної інфільтрацією. Такі структурні зміни в будові серця виникають внаслідок порушення багатьох процесів. Ембріон, ще перед імплантацією, зазнає значного впливу, оскільки виникає посилення такого явища, як апоптоз. Внаслідок цього, зменшується внутрішньої-клітинна маса плоду. Гіперглікемія призводить до гіпертрофії і дилятації шлуночків новородженних, порушує мікроциркуляцію міокарда, його скорочувальну функцію та викликає локальний фіброз. На сьогодні в науковій літературі досить багато відомостей про морфологічні модифікації різних органів та систем. Незважаючи на це, залишаються дискусійними та не вирішеними ряд питань, про вплив цукрового діабету на кардіогенез.

Посилання

Dzugkoev SG, Tedtoeva AI, Dzugkoeva FS, Mozhaeva IV, Margieva OI. [Pregnancy and diabetes]. Modern problems of science and education. 2016;4:43-44. Russian.

Berger H, Gagnon R, Sermer M. Diabetes in pregnancy. Journal of Obstetrics and Gynaecology Canada. 2016; 38(7): 667-679.

Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics. 2019; 14(3): 215-235.

Asplund K, Westman S, Hellerstrom C. Glucose stimulation of insulin secretion from the isolated pancreas of foetal and newborn rats. Diabetologia. USA; 1970. 204 р. English.

Hellerstrom C, Swenne I, Eriksson UJ. Is there an animal model for gestational diabetes. Diabetes. USA; 1985. 34: 28–31.

Molsted-Pedersen L, Tygstrups I, Pedersen J. Congenital malformations in newborn infants of diabetic women: correlation with maternal diabetic vascular complications. Lancet. 1964; 1: 1124-1126

Kucera J. Rate and type of congenital anomalies among offspring of diabetic women. J Reprod Med. 1971; 7(2): 73-82

Mills JL. Malformations in infants of diabetic mothers. Teratology. 1982; 25 (3): 385-394.

Ray JG, O'Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM. 2001; 94(8): 435-444.

Platt MJ, Stanisstreet M, Casson IF, Howard CV, Walkinshaw S, Pennycook S. St Vincent's Declaration 10 years on: outcomes of diabetic pregnancies. Diabetic Medicine.2002; 19(3): 216-220.

Evers IM, de Valk HW, Visser GH. Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. BMJ. 2004; 328(7445): 915.

Verheijen EC, Critchley JA, Whitelaw DC, Tuffnell DJ. Outcomes of pregnancies in women with pre-existing type 1 or type 2 diabetes, in an ethnically mixed population. An International Journal of Obstetrics & Gynaecology. 2005; 112(11): 1500-1503.

Macintosh MC, Fleming KM, Bailey JA, Doyle P, Modder J, Acolet D. Perinatal mortality and congenital anomalies in babies of women with type 1 or type 2 diabetes in England, Wales, and Northern Ireland: population based study. BMJ. 2006; 333(7560): 177.

Murphy HR, Steel SA, Roland JM, Morris D, Ball V, Campbell PJ. Obstetric and perinatal outcomes in pregnancies complicated by type 1 and type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabetic Medcine. 2011; 28(9): 1060–1067.

Knight KM, Thornburg LL, Pressman EK. Pregnancy outcomes in type 2 diabetic patients as compared with type 1 diabetic patients and nondiabetic controls. The Journal of reproductive medicine. 2012; 57(9-10): 397-404.

Bell R, Glinianaia SV, Tennant PW, Bilous RW, Rankin J. Peri-conception hyperglycaemia and nephropathy are associated with risk of congenital anomaly in women with pre-existing diabetes: a population-based cohort study. Diabetologia. 2012; 55(4): 936-947.

Vinceti M, Malagoli C, Rothman KJ, Rodolfi R, Astolfi G, Calzolari E. Risk of birth defects associated with maternal pregestational diabetes. European journal of epidemiology. 2014; 29(6): 411-418.

Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos SL. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. American journal of obstetrics and gynecology. 2000; 182(2): 313-320.

Brydon P, Smith T, Proffitt M, Gee H, Holder R, Dunne F. Pregnancy outcome in women with type 2 diabetes mellitus needs to be addressed. International journal of clinical practice. 2000; 54(7): 418-419.

Dunne F, Brydon P, Smith K, Gee H. Pregnancy in women with type 2 diabetes: 12 years outcome data. Diabetic Medicine. 2002; 20(9): 734-738.

Knight KM, Pressman EK, Hackney DN, Thornburg LL. Perinatal outcomes in type 2 diabetic patients compared with non-diabetic patients matched by body mass index. The Journal of Maternal-Fetal & Neonatal Medicine. 2012; 25(6): 611-615.

Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and metaanalysis. The Journal of Clinical Endocrinology & Metabolism. 2009; 94(11): 4284-4291.

Gizzo S, Patrelli TS, Rossanese M, Noventa M, Berretta R, Di Gangi S. An update on diabetic women obstetrical outcomes linked to preconception and pregnancy glycemic profile: a systematic literature review. The Scientific World Journal. 2013.

Roglic G. WHO Global report on diabetes: A summary. International Journal of Noncommunicable Diseases. 2016; 1(1): 3.

Gabbay-Benziv R, Reece EA, Wang F, Yang P. Birth defects in pregestational diabetes: Defect range, glycemic threshold and pathogenesis. World journal of diabetes. 2015; 6(3): 481–488.

Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E. Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18 years of follow up. Acta diabetologica. 2018; 55(10): 1037-1042.

Hromadnikova I, Kotlabova K, Dvorakova L, Krofta L, Sirc J. Substantially altered expression profile of diabetes/cardiovascular/cerebrovascular disease associated microRNAs in children descending from pregnancy complicated by gestational diabetes mellitus — one of several possible reasons for an increased cardiovascular risk. Cells. 2020; 9(6): 1557.

Ghandi Y, Habibi D, Nasri K, Alinejad S, Taherahmad H, Arjmand Shabestari A, Nematinejad A. Effect of well-controlled gestational diabetes on left ventricular diastolic dysfunction in neonates. The Journal of Maternal-Fetal & Neonatal Medicine. 2019; 32(13): 2101-2106.

Miranda JO, Cerqueira RJ, Ramalho C, Areias JC, Henriques-Coelho T. Fetal cardiac function in maternal diabetes: a conventional and speckle-tracking echocardiographic study. Journal of the American Society of Echocardiography. 2018; 31(3): 333-341.

Lister R, Chamberlain A, Einstein F, Wu B, Zheng D, Zhou B. Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. Diabetes & obesity international journal. 2019; 4(3).

Yarmolenko O, Bumeister V, Demikhova N, Prykhodko O, Gordienko O, Khotyeev Y. The Effect of Alloxan-Induced Hyperglycemia on the Myocardium of Experimental Animals. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 2020; 27(2): 80-84.

Jackson CV, McGrath GM, Tahiliani AG, Vadlamudi RV, McNeill JH. A functional and ultrastructural analysis of experimental diabetic rat myocardium: manifestation of a cardiomyopathy. Diabetes. 1985; 34(9): 876-883.

Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology-Endocrinology And Metabolism. 2000; 279(5): 1104-1113.

McNeill JH. Experimental models of diabetes. Routledge. Vancouver, Canada; 2018. 401 р. English.

Jarosz J, Ghosh S, Delbridge LM, Petzer A, Hickey AJ, Crampin EJ, Rajagopal, V. Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. American Journal of Physiology-Cell Physiology. 2017; 312(2): 190-197.

Mishra PK, Ying W, Nandi SS, Bandyopadhyay GK, Patel KK, Mahata SK. Diabetic cardiomyopathy: an immunometabolic perspective. Frontiers in endocrinology. 2017; 8: 72.

Wang XM, Wang YC, Liu XJ, Wang Q, Zhang, CM, Zhang LP, Ge ZM. BRD7 mediates hyperglycaemia‐induced myocardial apoptosis via endoplasmic reticulum stress signalling pathway. Journal of cellular and molecular medicine. 2017; 21(6): 1094-1105.

Sun S, Yang S, An N, Wang G, Xu Q, Liu J, Mao Y. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. Journal of ethnopharmacology. 2019; 238: 111857.

Law B, Fowlkes V, Goldsmith JG, Carver W, Goldsmith EC. Diabetes-induced alterations in the extracellular matrix and their impact on myocardial function. Microscopy and Microanalysis. 2012; 18(1): 22-34.

Waddingham MT, Edgley AJ, Tsuchimochi H, Kelly DJ, Shirai M, Pearson JT. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World journal of diabetes. 2015; 6(7): 943.

Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, Imperatore G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. The Lancet. 2019; 391(10138): 2430-2440.

Lister R, Chamberlain A, Einstein F, Wu B, Zheng D, Zhou B. Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. Diabetes & obesity international journal. 2019; 4(3).

Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nature Reviews Endocrinology. 2016; 12(10): 616-622.

Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes. 1997; 46(7): 1189-1197.

Fine EL, Horal M, Chang TI, Fortin G, Loeken MR. Evidence that elevated glucose causes altered gene expression, apoptosis and neural tube defects in a mouse model of diabetic pregnancy. Diabetes. 1999; 48(12): 2454-2462.

Sun F, Kawasaki E, Akazawa S, Hishikawa Y, Sugahara K, Kamihira S. Apoptosis and its pathway in early post-implantation embryos of diabetic rats. Diabetes research and clinical practice. 2005; 67(2): 110-118.

Gareskog M, Eriksson UJ, Wentzel P. Combined supplementation of folic acid and vitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects Research Part A: Clinical and Molecular Teratology. 2006; 76(6): 483-490.

Li X, Weng H, Xu C, Reece EA, Yang P. Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy. Diabetes. 2012; 61(8): 2084-2092.

Yang P, Li X, Xu C, Eckert RL, Reece EA, Zielke HR. Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects. Science signaling. 2013; 6(290): 74-75.

Gareskog M, Cederberg J, Eriksson UJ, Wentzel P. Maternal diabetes in vivo and high glucose concentration in vitro increases apoptosis in rat embryos. Reproductive toxicology. 2007; 23(1): 63-74.

Forsberg H, Eriksson UJ, Welsh N. Apoptosis in embryos of diabetic rats. Pharmacology & toxicology. 1998; 83(3): 104-111.

Reece EA, Ma XD, Zhao Z, Wu YK, Dhanasekaran D. Aberrant patterns of cellular communication in diabetes-induced embryopathy in rats: II, apoptotic pathways. American journal of obstetrics and gynecology. 2005; 192(3): 967-972.

Yang P, Zhao Z, Reece EA. Activation of oxidative stress signaling that is implicated in apoptosis with a mouse model of diabetic embryopathy. American journal of obstetrics and gynecology. 2008; 198(1): 130.

Zhao Z, Yang P, Eckert RL, Reece EA. Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2009; 86(1): 72-77.

Pampfer S. Apoptosis in rodent peri-implantation embryos: differential susceptibility of inner cell mass and trophectoderm cell lineages — a review. Placenta. 2000; 21: 3-10.

Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends in Endocrinology & Metabolism. 2001; 12(2): 78-82.

Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends in Endocrinology & Metabolism. 2001; 12(2): 78-82.

Eriksson UJ, Wentzel P. The status of diabetic embryopathy. Upsala journal of medical sciences. 2016; 121(2): 96-112.

##submission.downloads##

Опубліковано

2023-06-26

Номер

Розділ

Статті