Лектини як гістохімічні маркери морфогенезу нирки
Ключові слова:
лектини, нирка, морфогенез, глікокон’югатиАнотація
У гістофізіології нирок виключно важлива роль належить високомолекулярним вуглеводовмісним біополімерам глікопротеїнам і протеогліканам. Зокрема, глікопротеїни подоцитів подопланін і подокаліксин забезпечують підтримання морфо-функціонального статусу означених клітинних елементів: формування цитоподій, щілинних діафрагм, та, спільно з мембраною ниркового клубочка негативний електричний потенціал і селективну проникність фільтраційного бар’єру. Глікопротеїни щіточкової облямівки епітеліоцитів проксимальних трубочок нефронів мегалін і кубілін відіграють провідну роль у механізмах ендоцитозу та реабсорбції макромолекул з ультрафільтрату. Глікопротеїни екстрацелюлярного матриксу фібронектин, ламінін, тенасцин, нідоген, різні типи колагену, гепаран-сульфат протеоглікани перлекан та агрин, дерматан-сульфат протеоглікани версикан, біглікан та декорин забезпечують адгезивні, опорно-механічні та індуктивні властивості ниркових мікроструктур. З урахуванням вищезазначеного лектини як реагенти здатні до вибіркового розпізнавання глікополімерів у залежності від складу та конфігурації їхніх кінцевих вуглеводних детермінант представляють собою цінний інструмент у дослідженні як нормального морфогенезу нирок, так і етіопатогенезу нефропатій. Стаття містить огляд даних літератури і результатів власних досліджень стосовно закономірностей просторово-часової перебудови глікому нирки упродовж пре- і постнатального морфогенезу. Особлива увага звернена на видову специфічність гістотопографії рецепторів лектинів нирки експериментальних тварин і людини. Показано реальні приклади використання лектинів як селективних гістологічних маркерів ниркових структур. Розглянуто перспективи використання ендогенних лектинів у гістохімії глікополімерів.
Посилання
Quintanilla M, Montero-Montero L, Renart J, Martin-Villar E. Podoplanin in inflammation and cancer. Int J Mol Sci. 2019; 20(3): 707. DOI: 10.3390/ijms 2003707.
Refaeli I, Hughes MR, Wong AK, Bissonnette ML, Roskelley CD, Vogl AW, Barbour SJ, Freedman BS, McNagny KM. Distinct functional requirements for podocalyxin in immature and ma-ture podocytes reveal mechanisms of human kidney disease. Scientific Reports. 2020; 10:9419. https://doi.org/10.1038/s41598-020-64907-3.
Morelle W, Haslam SM, Ziak M, Roth J, Morris HM, Dell A. Characterization of N-linked oligosaccharides of megalin (gp330) from rat kid-ney. Glycobiology. 2000; 10(3): 295-304. 4. Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney International. 2016; 89(1):58-67. DOI: 10.1016/j.kint.2015.11.007.
Odera K, Goto S, Takahashi R. Age-related change of endocytic receptors megalin and cubilin in the kidney. Biogerontology. 2007; 8(5): 505-515.
Ziak M, Kerjaschki D, Farquhar MG, Roth J. Identification of megalin as the sole rat kidney sialoglycoprotein containing poly α2,8 deamino-neuraminic acid. J Am Soc Nephrol. 1999; 10: 203-209.
Ziak M, Roth J. Expression of oligo/poly alpha 2,8-linked deamino-neuraminic acid and megalin during kidney development and maturation: mutually exclusive distribution with poly alpha 2,8-linked N-acetyl-neuraminic acid of N-CAM. Histochem Cell Biol. 1999; 112: 169-178.
Bulow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. 2019; 67(9): 643-661. https://doi.org/10.1369/0022155419849388.
Bondar IA, Klimontov VV. [Glycosaminoglycans and diabetic nephropathy]. Problems of Endocrinology. 2004; 50(2): 29-34. Russian.
Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH. Glomerular filtration is normal in the absence of both agrin and perlecan–heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 2009; 24: 2044-2051. DOI: 10.1093/ndt/gfn758.
Noonan DM, Hassel JR. Perlecan, the large low-density proteoglycan of basement membranes: structure and variant forms. Kidney International. 1993; 43: 53-60.
Ambarova NO. [Rearrangement of rat kid-ney sialoglycans during postnatal morphogenesis and in streptozotocin-induced diabetic nephropathy]. Acta Medica Leopoliensia. 2009; 15(2): 35-45. Ukrainian.
Ambarova NO. [Rearrangement of rat kid-ney sialoglycans during postnatal morphogenesis and in streptozotocin-induced diabetic nephropathy]. Morphologia. 2009; 3(3): 21-31. Ukrainian.
Ambarova NO. [Lectin from Clitocybe nebularis fungus: a new histochemical reagent for the investigation of renal morphogenesis and histo-pathology]. World of Medicine and Biology. 2016; 1(55): 119-121. Ukrainian.
Ambarova NO, Antonyuk VO, Lutsyk OD. [Manosoglycans of rat kidney in postnatal ontogene-sis and during development of streptozotocin-induced diabetes mellitus]. World of Medicine and Biology. 2008; 4: 95-103. Ukrainian.
Ambarova NO, Antonyuk VO, Lutsyk OD. [Fucosoglycans of rat kidney: redistribution in post-natal ontogenesis and during development of streptozotocin-induced diabetes]. Clinical Anatomy and Operative Surgery. 2009; 8(1): 115-121. Ukrainian.
Ambarova NO, Lutsyk OD. [Binding of lectins with different carbohydrate specificities to kidney glycopolymeres of newborn rats]. Acta Medica Leopoliensia. 2007; 13(4): 59-66. Ukrainian.
Ambarova NO, Lutsyk OD. [Selective histochemical labeling of normal rat kidney and that affected by streptozotocin-induced diabetes mellitus using lectin from Lactarius pergamenus fungus]. Morphologia. 2017; 11(4): 23-27. Ukrainian.
Ambarova NA, Lutsyk SA. Lectins WGA and LASA as selective histochemical markers of rat kidney. Acta Medica Leopoliensia. 2018; 24(2): 39-44.
Antonyuk VO, Yashchenko AM, Antonyuk RV, Ambarova NO. [Carbohydrate specificity of lectin purified from Mycena pura fungus and its ap-plicability for histochemical investigations]. Biopol-ymers and Cell. 2009; 25(6): 454-465. Ukrainian.
Lutsyk A, Ambarova N, Antonyuk V. Dia-betic alteration versus postnatal maturation of rat kidney glycoconjugates comparative detection by lectin probes. Folia Histochem Cytobiol. 2013; 51(1): 92-102.
Gheri G, Bryk SG, Sgambati E, Russo G. Chick embryo metanephros: the glycosylation pat-tern as revealed with lectin conjugates. Acta Histochem. 1993; 94(2): 113-124.
Hanai T, Usuda N, Morita T, Nagata T. Light microscopic lectin histochemistry in aging mouse kidney: study of compositional changes in glycoconjugates. J Histochem Cytochem. 1994; 42(7): 897-906.
Hentschel H, Walther P. Heterogenous dis-tribution of olygoconjugates in the kidney of dogfish Scyliorhinus caniculus (L.) with reference to chang-es in the glycosylation pattern during ontogenetic development of the nephron. Anat Rec. 1993; 235(1): 21-32.
Holthofer H. Vascularization of the embry-onic kidney. Detection of endothelial cells with Ulex europaeus I lectin. Cell Differentiation. 1987; 20: 27-31.
Holthofer H. Cell type-specific glycoconjugates of collecting duct cells during mat-uration of the rat kidney. Cell Tissue Res. 1988; 253: 305-309.
Holthofer H, Hennigar RA, Schulte BA. Glomerular sialoconjugates of developing and ma-ture rat kidney. Cell Differentiation. 1988; 24: 215-222.
Holthofer H, Virtanen I. Glycosylation of developing human glomeruli: lectin binding sites during cell induction and maturation. J Histochem Cytochem. 1987; 35: 33-37.
Imamura H, Akimoto Y, Chino I, Hirano H. Changes in lectin binding pattern during fetal and postnatal development of renal corpuscles of the rat kidney as revealed by light and electron microscopy. Acta Histochem Cytochem. 1993; 26(5): 349-358.
Kunz A, Brown D, Orci L. Appearance of Helix pomatia lectin-binding sites at podocyte plas-ma membrane during glomerular differentiation: a quantitative analysis using the lectin-gold technique. Lab Invest. 1984; 51: 317-324.
Lackie PM, Zuber C, Roth J. Polysialic acid and N-CAM expression in embryonic rat kidney: mesenchymal and epithelial elements show different patterns of expression. Development. 1990; 110: 933-947.
Laitinen I, Virtanen I, Saxen I. Changes in the glycosylation pattern during embryonic devel-opment of mouse kidney as revealed with lectin con-jugates. J Histochem Cytochem. 1987; 35: 55-65.
Michael L, Sweeney DE, Davies JA. The lectin Dolichos biflorus agglutininis a sensitive indi-
cator of branching morphogenetic activity in the developing mouse metanephric collecting duct. J Anat. 2007; 210(10): 89-97. https://doi.org/10.1111/j.1469-7580.2006.00670.x.
Ojeda JL, Ros MA, Icardo JM. Lectin-binding sites during postnatal differentiation of nor-mal and cystic rabbit. Anat Embryol. 1993; 187: 539-547.
Roth J, Taatjes D, Bitter-Suermann D, Finne J. Polysialic acid units are spacially and tem-porally expressed in developing postnatal rat kidney. Proc Natl Acad Sci USA. 1987; 4: 1969-1973.
Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin binding intercalated cells. Am J Physiol. 1992; 262(2Pt2): F199-208.
Sato H, Toyoda K, Furukawa F. Lectin re-activity in the kidney of newborn rat compared to adult rat. Bull Natl Inst Hyg Sci. 1990; 108: 78-83.
Schumacher K, Strehl L, Minuth WW. De-tection of glycosylated sites in embryonic rat kidney by lectin chemistry. Histochem Cell Biol. 2002;118: 79-87.
Toma V, Zuber C, Sata T. Thomsen-Friedenreich glycotope is expressed in developing and normal kidney but not in renal neoplasms. Hum Pathol. 2000; 31: 647-655.
Wagner P, Roth J. Occurance and distribu-tion of sialic acid residues in developing rat glomer-ulus: investigation with Limax flavus and wheat germ agglutinin. Eur J Cell Biol. 1988; 47: 259-269.
Zharkov SV. [Redistribution of sialo- and DGlcNAc-conjugates during histogenesis of primary and definitive human kidney]. World of Medicine and Biology. 2005; 3: 116-121. Russian.
Zuber C, Paulson JC, Toma V. Spatiotem-poral expression patterns of sialoglycoconjugates during nephron morphogenesis and their regional and cell type-specific distribution in adult rat kidney. Histochem Cell Biol. 2003; 120: 143-160. 43. Aguirre JI, Han JS, Itagaki S, Doi K. Lectin histochemical studies in the kidney of normal and streptozotocin-induced diabetic hamsters. Histol Histopathol. 1993; 8(2): 273-278.
Babal P, Slugen I, Danis D. Sialic acid ex-pression in normal and diseased human kidney. Acta Histochem. 1996; 98(1): 71-77.
Charest PM, Roth J. Localization of sialic acid in kidney glomeruli: regionalization in the podocyte plasma membrane and loss in experimental nephrosis. Proc Natl Acad Sci USA. 1985; 82(24): 8508-8512.
Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM. Galectin-3 in renal pathology: more than just an innocent bystander?
Am J Nephrol. 2016; 43: 305-317. DOI:10.1159/000446376. 47. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA. 2014; 111 (4): 1527-1532. https://doi.org/10.1073/pnas. 1310653110.
Perez-Hernandez J, Olivares D, Solaz E, Martínez F, Pichler G, Chaves FJ, Cortes R, Redón J. Quantification of urinary protein levels of podocyte associated molecules in hypertensive pa-tients with microalbuminuria. J Hypertension. 2017; 35(Suppl. 2). DOI:10.1097/01.hjh.0000523014. 30591.53.
Silva FG, Nadasdy T, Laszik Z. Immunohistochemical and lectin dissection of the human nephron in health and disease. Arch Pathol Lab Med. 1993; 117(12): 1233-1239.
Engel U, Breborowicz D, Bog-Hansen T, Francis D. Lectin staining of renal tubules in normal kidney. APMIS. 1997;105(1): 31-34.
Faraggiana T, Malchiodi F, Prado A, Churg J. Lectin-peroxidase conjugate reactivity in normal human kidney. J Histochem Сytochem. 1982; 30(5): 451-458.
Holthofer H. Lectin binding sites in kidney. A comparative study of 14 animal species. J Histochem Cytochem. 1983; 31: 531-537.
Holthofer H, Miettinen A, Virtanen I. Comparison of lectin binding sites in the kidneys of different animal species. In: Lectins Biology, Bio-chemistry, Clinical Biochemistry. Proc V lectin meeting. Berlin, 1983; 3: 205-212.
Holthofer H, Virtanen I, Pettersson E. Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab In-vest.1981;45(5):391-399.
Kaneko Y, Yamamoto H, Colley KJ, Moskal JR. Expression of Galβ1,4GlcNAc α2,6-sialyltransferase and α2,6-linked sialoglyco-conjugates in normal human and rat tissues. J Histochem Cytochem. 1995; 43(9): 945-954.
Merlet D, Merlet JP, Cambar J. Isolation of tubular proximal cells of the human kidney by af-finity chromatography using Lotus tetragonolobus lectin. C R Acad Sci III. 1990; 310(12): 565-570.
Bretton R, Bariety J. A comparative ultrastructural localization of concanavalin A, WGA and RCA in the glomeruli of normal rat kidney. J Histochem Cytochem. 1976; 24: 1093-1102.
Brown D, Kunz A, Wohlwend A, Vassalli JD, Orci L. Ultrastructural detection of the heteroge-neity of glycocalyx in convoluted and straight prox-imal tubules of rat kidney by the lectin-gold com-plex technic.
C R Seances Acad Sci III. 1983; 297(10): 501-506.
Brown D, Roth J, Orci L. Lectin-gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am J Physiol. 1985; 248(3.Pt1): C348-C356.
LeHir M, Dubach UC. The cellular speci-ficity of lectin binding in the kidney I. A light mi-croscopic study in the rat. Histochemistry. 1982; 74(4): 521-530.
Murata F, Tsuyama S, Suzuki S. Distribu-tion of glycoconjugates in the kidney studied by use of labeled lectins. J Histochem Cytochem. 1983; 31: 139-148.
Roth J, Taatjes D. Glycocalyx heterogenei-ty of rat kidney urinary tubule: demonstration with a lectin-gold technique specific for sialic acid. Eur J Cell Biol. 1985; 39: 449-457.
Schulte BA, Spicer SS. Histochemical evaluation of mouse and rat kidneys with lectin-horseradish peroxidase conjugates. Am J Anat. 1983; 168: 345-362.
Toma V, Zuber C, Sata T, Roth J. Special-ized expression of simple O-glycans along the rat kidney nephron. Glycobiology. 1999; 9(11): 1191-1197.
Zelengurov VM, Lutsyk AD, Lutsyk MD, Petrovskaya NYu. [Experimental investigation of postmortal changes in tissue structures using Ricinus communis lectins]. Sudebno-Medicinskaya Expertiza. 1979; 22(4): 31-34. Russian. 66. Herken R, Fussek M, Barth S, Götz W. LR-White and LR-Gold resins for postembedding im-munofluorescence staining of laminin in mouse kid-ney. Histochem J. 1988; 20(8): 427-432. DOI: 10.1007/BF01002428.
Herken R, Fussek M, Thies M. Light and electron microscopical postembedding lectin histochemistry for WGA-binding sites in the renal cortex of the mouse embedded in polyhydroxy aro-matic resins LR-White and LR-Gold. Histochem Cell Biol. 1988; 89(3): 277-282. DOI: 10.1007/BF00493152. 68. Herken R, Fussek M, Zarfl A. Localization of fucosyl moieties in the mouse renal cortex by lectin histochemistry using the fucose binding lectins LTA and UEA I and by autoradiography us-ing 3H-labelled fucose. Histochemistry. 1988;89(5):505-508. DOI: 10.1007/BF00492609. 69. Herken R, Sander B, Hofmann M. Ultrastructural localization of WGA, RCA I, LFA and SBA binding sites in the seven-day-old mouse embryo. Histochemistry. 1990; 94(5): 525-530. DOI: 10.1007/BF00272617.
Liska J, Jakubovsky J, Ruzickova M, Surmikova E, Zaviacic M. The use of lectins identi-fied with specific antibodies in lectin histochemistry of NZB/F1 mouse kidney. Acta Histochem. 1993; 94(2): 185-188.
Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW. Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy. Am J Pathol. 2001; 158(1): 49-55.
Yabuki A, Suzuki S, Matsumoto M, Nishinakagawa H. Lectin- histochemical and -cytochemical study of periodic acid Schiff-positive lysosome granules as a histological feature of the female mouse kidney. Histol Histopathol. 2002; 17(4): 1017-1024.
Castagnaro M. Lectin histochemistry of rabbit nephron. Biol Struct Morphol. 1991; 3(1): 20-26.
LeHir M, Dubach UC. The cellular speci-ficity of lectin binding in the kidney II. A light mi-croscopic study in the rabbit. Histochemistry. 1982; 74(4): 531-540.
Ojeda JL, Piedra S. Lectin-binding sites and silver affinity of the macula densa basement mem-branes in the rabbit kidney. J Anat. 1994; 185(3): 529-535.
Rielle JC, Brown D, Orci L. Differences in glycocalyx composition between cells of the cortical thich ascending limb of Henle and the macula densa revealed by lectin-gold cytochemistry. 1987; 219(3): 243-248.
Wittmann P, Sinowatz S. Cellular specifici-ty of lectin binding in the kidney of the quail (Coturniz coturnix japonica). Anat Histol Embryol. 1989; 18(2): 122-135.
Ojeda JL, Icardo JM, Domezain A. Renal corpuscle of the sturgeon kidney: an ultrastructural, chemical dissection and lectin-binding study. Anat Rec. 2003; 272(2): 563-573.
Hewitson ND, Grimwood L. Immuno and lectin histochemistry for renal light microscopy. Methods Mol Biol. 2009; 466: 133-147.
Jones CJ, Stoddart RW. A post-embedding avidin-biotin peroxidase system to demonstrate the light and electron microscopic localization of lectin binding sites in rat kidney tubules. Histochem J. 1986; 18(7): 371-379.
Nakajima M. Immuno and lectin histochemistry for renal electron microscopy. Meth-ods Mol Biol. 2009; 466: 149-159.
Oemar BS, Buss H, Hollweg G. Influence of the lectins and polycation on the configuration of renal podocytes: a scanning electron microscopic study of renal podocytes after micropuncture of the glomerulus in vivo. Renal Physiol. 1980; 3(1-6): 330-335.
Taatjes DJ, Roth J, Peumans W, Goldstein IJ. Elderberry bark lectin-gold techniques for the detection of Neu5Ac(α2-6)Gal/GalNAc: applica-tions and limitations. Histochem J. 1988; 20: 478-490.
Toma V, Zuber C, Winter HC. Application of a lectin from the mushroom Polyporus squamosus for the histochemical detection of the NeuAc(α2-6)Gal(β1-4)Glc/GlcNAc sequence of N-linked oli-gosaccharides: a comparison with Sambucus nigra lectin. Histochem Cell Biol. 2001; 116: 183-193.
Fischer E, Wagner M, Bertsch T. Cepaea hortensis agglutinin-1, specific for N-glycosidically linked sialic acids, selectively labels endothelial
cells of distinct vascular beds. Histochem J. 2000; 32(2): 105-109. DOI: 10.1023/A:1004066212317.
LeHir M, Kaissling B, Koeppen BM, Wade JB. Binding of peanut lectin to specific epithelial cell types in the kidney. Am J Physiol. 1982; 242: C117-C129.
Roth J, Brown D, Orci L. Regional distribu-tion of N-acetyl-D-galactose residues in the glycocalyx of glomerular podocytes. J Cell Biol. 1983; 96: 1189-1202.
Antony JS, Ojurongbe O, Kremsner PG, Velavan TP. Lectin complement protein Collectin 11 (CL-K1) and susceptibility to urinary schistosomiasis. PLoS Negl Trop Dis. 2015; 9(3): e0003647.
https://doi.org/10.1371/journal.pntd.0003647.
Hughes RC. Galectins in kidney develop-ment. Glycoconj J. 2002; 19: 621-629. https://doi.org/10.1023/B:GLYC.0000014094.39168.fd. 90. Nio J, Takahashi-Ivanaga H, Morimatsu M, Kon Y, Ivanaga T. Immunohistochemical and in situ hybridization analysis of galectin-3, a β-galactoside binding lectin, in the urinary system of adult mice. Histochem Cell Biol. 2006; 126(1): 45-56. DOI: 10.1007/s00418-005-0142-5.
Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Pugliese G. Role of galectin-3 as a receptor for advanced glycosylation end prod-ucts. Kidney International. 2000; 58(suppl 77): S-31-S-39.
Saussez S, Nonclercq D, Laurent G, Wattiez R, Andre S, Kaltner H, Gabius HJ, Kiss R, Toubeau G. Toward functional glycomics by locali-zation of tissue lectins: immunohisctochemical galectin fingerprinting during diethylstilbestrol-induced kidney tumorigenesis in male Syrian ham-ster. Histochem Cell Biol. 2005; 123(1): 29-41.
DOI 10.1007/s00418-004-0733-6.
Sciacchitano S, Laura L, Morgante A, Ulivieri A, Magi F, DeFrancesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018; 19(2): 379.
doi: 10.3390/ijms19020379.
Bogomolova NA. [Age-related changes in kidney of the rat]. Arch Anat Gistol Embryol. 1965; 48(4): 80-85. Russian.
Goncharevskaya OA. [Intracortical and juxtamedullary nephrons in postnatal ontogenesis of the rat]. Arch Anat Gistol Embryol. 1977; 72(6): 20-26. Russian.
Antonyuk VO. Lectyny ta ich surovynni dzherela [Lectins and their raw resources]. Lviv: Kvart; 2005.-554 p. Ukrainian.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative commons Attribution 4.0 International (CC BY 4.0), яка дозволяє іншим особам вільно поширювати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи в цьому журналі.
Автори, направляючи рукопис до редакції журналу «Morphologia», погоджуються з тим, що редакції передаються права на захист і використання рукопису (переданого до редакції матеріалу, в тому числі таких об'єктів, що охороняються авторським правом, як фотографії автора, малюнки, схеми, таблиці і т.п.), в тому числі на відтворення в пресі і в мережі Інтернет; на поширення; на переклад рукопису на будь-які мови; експорту та імпорту примірників журналу зі статтею Авторів з метою поширення, доведення до загального відома. Зазначені вище права Автори передають Редакції без обмеження терміну їх дії і на території всіх країн світу без обмеження.
Автори гарантують, що вони мають виняткові права на використання матеріалів, переданих до редакції. Редактори не несуть відповідальності перед третіми особами за порушення гарантії, надані авторами. Розглянуті права передаються до редакції з моменту підписання поточної публікації для публікації. Відтворення матеріалів, опублікованих в журналі іншими особами та юридичними особами, можливе лише за згодою редакції, з обов'язковим зазначенням повної бібліографічного посилання первинної публікації. Автори залишають за собою право використовувати опублікований матеріал, його фрагменти і частини для навчальних матеріалів, усні презентації, підготовку дисертації дисертації з обов'язковою бібліографічною посиланням на оригінальну роботу. Електронна копія опублікованій статті, що завантажується з офіційного веб-сайту журналу в форматі .pdf, може бути розміщена авторами на офіційному веб-сайті їх установ, будь-яких інших офіційних ресурсах з відкритим доступом.