Порівняльна характеристика стовбурових клітин людини

Автор(и)

  • O.Yu. Pototskaya
  • K.M. Shevchenko

Ключові слова:

ембріональні стовбурові клітини, перинатальні екстраембріональні стовбурові клітини, зрілі (соматичні) стовбурові клітини, індуковані плюрипотентні стовбурові клітини, екстрацелюлярні везикули.

Анотація

Терапія стовбуровими клітинами (СК) є одним із найперспективніших методів у практичній медицині; продукти на основі СК активно вивчаються в клінічних випробуваннях, а деякі вже офіційно дозволені до застосування в багатьох країнах світу. Мета цієї статті полягає у порівняльному аналізі різновидів СК людини, способів їх отримання та перспектив використання. СК можна розділити на основні групи залежно від терміну розвитку організму-донора. Ембріональні стовбурові клітини виділяють з бластоцисти, отриманої в результаті екстракорпорального запліднення, клонування, напівклонування або партеногенезу (гіногенетичні та андрогенетичні СК). Фетальні СК можуть бути виділені з тканин зародка та плоду до моменту народження, або в результаті процедури переривання вагітності (у тому числі ектопічної). У складі фетальних СК виділяють перинатальні екстраембріональні, які отримують із позазародкових органів (пуповини, амніону, плаценти) після пологів; серед них розрізняють гемопоетичні, мезенхімальні, епітеліальні та децидуальні СК. Зрілі (соматичні, тканиноспецифічні) СК можуть бути виділені з різних тканин та органів зрілого організму протягом усього життя; їх властивості залежать від місця локалізації, і навіть віку пацієнта. Додатково СК можуть бути створені штучним шляхом з диференційованих клітин за рахунок модифікації генної експресії; вони виділені до групи індукованих плюрипотентних СК. Кожна з груп СК не є однорідною, а також має низку переваг та недоліків, які проаналізовані в даному огляді. Також приділено увагу перспективному напрямку використання екстрацелюлярних везикул СК в якості альтернативи клітинної терапії.

Посилання

Approved Cellular and Gene Therapy Products [Internet]. Food and Drug Administration [updated 2022 Jan 1; cited 2022 Jan 29]. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products.

Sipp D, Caulfield T, Kaye J, Barfoot J, Blackburn C, Chan S, De Luca M, Kent A, McCabe C, Munsie M, Sleeboom-Faulkner M, Sugarman J, van Zimmeren E, Zarzeczny A, Rasko J E J. Marketing of unproven stem cell-based interventions: A call to action. Sci. Transl. Med. 2017;9(397):eaag0426. doi 10.1126/scitranslmed.aag0426.

Stem cell facts [Internet]. International Society for Stem Cell Research: A closer look at Stem Cells [updated 2019 Jan 11; cited 2022 Jan 29]. Available from: https://www.closerlookatstemcells.org/wp-content/uploads/2018/10/stem-cell-facts.pdf.

Thomson J A, Itskovitz-eldor J, Shapiro SS, Waknitz M A, Swiergiel JJ, Marshall VS, Jones JM. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 2010;282(5391):1145-7. DOI: 10.1126/science.282.5391.1145.

Stachelscheid H, Wulf-Goldenberg A, Eckert K, Jensen J, Edsbagge J, Björquist P, Rivero M, Strehl R, Jozefczuk J, Prigione A, Adjaye J, Urbaniak T, Bussmann P, Zeilinger K, Gerlach JC. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors. J. Tissue Eng. Regen. Med. 2013;7(9.):729–41. DOI: 10.1002/term.1467.

Zhong C, Li J. Efficient Generation of gene-modified mice by haploid embryonic stem cell-mediated semi-cloned technology. Methods Mol. Biol. 2017;1498:121-33. DOI: 10.1007/978-1-4939-6472-7_8.

Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 2002;99(15):9864–9. DOI: 10.1073/pnas.142298299.

Liu Y, Li Y, Hwang A, Wang S, Jia C, Yu L, Li J. Comparison of Three Embryo Culture Methods for Derivation of Human Embryonic Stem Cells from Discarded Embryos. Cell. Reprogram. 2011;13(3): 233–239. DOI: 10.1089/cell.2010.0092.

Amit M, Carpenter MK, Inokuma MS, Chiu C-P, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA. Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture. Dev. Biol. 2000;227(2):271–278. DOI: 10.1006/dbio.2000.9912

Zucchelli M, Ström S, Holm F, Malmgren H, Sahlén S, Religa P, Hovatta O, Kere J, Inzunza J. In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period. Stem Cells Dev. 2012;21(18): 3363–3371. DOI: 10.1089/scd.2012.0066.

Yang S, Lin G, Tan YQ, Zhou D, Deng LY, Cheng DH, Luo SW, Liu TC, Zhou XY, Sun Z, Xiang Y, Chen TJ, Wen JF, Lu GX. Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes, Chromosom. Cancer. 2008;47(8): 665–79. DOI: 10.1002/gcc.20574

Hovatta O, Jaconi M, Töhönen V, Béna F, Gimelli S, Bosman A, Holm F, Wyder S, Zdobnov EM, Irion O, Andrews PW, Antonarakis SE, Zucchelli M, Kere J, Feki A. A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One. 2010;5(4). DOI: 10.1371/journal.pone.0010263

Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews. Cancer. 2011;11(4):268-277. DOI: 10.1038/nrc3034.

Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, Devroey P, Tournaye H, Liebaers I, Van de Velde H. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum. Reprod. 2009;24(11):2709–2717. DOI: 10.1093/humrep/dep262.

Feki A, Bosman A, Dubuisson JB, Irion O, Dahoun S, Pelte MF, Hovatta O, Jaconi ME. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo. Swiss Med. Wkly. 2008;138: 37–38. P. 540–550. DOI: 2008/37/smw-12385.

Hovatta O, Jaconi M, Töhönen V, Béna F, Gimelli S, Bosman A, Holm F, Wyder S, Zdobnov EM, Irion O, Andrews PW, Antonarakis SE, Zucchelli M, Kere J, Feki A. A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One. 2010;5(4). DOI: 10.1371/journal.pone.0010263.

Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell. 2013;153(6): 1228–1238. DOI: 10.1016/j.cell.2013.05.006.

Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW, Lee Y, Treff NR, Choi YH, Kimbrel EA, Dittman RE, Lanza R, Lee DR. Human somatic cell nuclear transfer using adult cells. Cell Stem Cell. 2014;14(6): 777–780. DOI: 10.1016/j.stem.2014.03.015.

Tao H, Chen X, Wei A, Song X, Wang W, Liang L, Zhao Q, Han Z, Han Z, Wang X, Li Z. Comparison of Teratoma Formation between Embryonic Stem Cells and Parthenogenetic Embryonic Stem Cells by Molecular Imaging. Stem Cells Int. 2018l:1–9. DOI: 10.1155/2018/7906531.

McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1): 179–183. DOI: 10.1016/0092-8674(84)90313-1.

Strain L, Warner JP, Johnston T, Bonthron DT. A human parthenogenetic chimaera. Nat Genet. 1995;11(2):164–169. DOI: 10.1038/ng1095-164.

Winberg J, Gustavsson P, Lagerstedt-Robinson K, Blennow E, Lundin J, Iwarsson E, Nordenström A, Anderlid BM, Bondeson ML, Nordenskjöld A, Nordgren A. Chimerism resulting from parthenogenetic activation and dispermic fertilization. Am J Med Genet Part A. 2010;152A(9):2277–2286. DOI: 10.1002/ajmg.a.33594.

Giltay JC, Brunt T, Beemer FA, Wit JM, Ploos van Amstel HK, Pearson PL, Wijmenga C. Polymorphic Detection of a Parthenogenetic Maternal and Double Paternal Contribution to a 46,XX/46,XY Hermaphrodite. Am J Hum Genet. 1998;62(4):937–940. DOI: 10.1086/301796.

Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic Instability in ES Cells and Cloned Mice. Science. 2001;293(5527): 95–97. DOI: 10.1126/science.1061402.

Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV. Patient-Specific Stem Cell Lines Derived from Human Parthenogenetic Blastocysts. Cloning Stem Cells. 2007;9(3): 432–49. DOI: 10.1089/clo.2007.0033.

Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M, Chaudhry GR. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. Journal of visualized experiments. 2017;122. DOI: 10.3791/55224.

Bennett M, Yu YY, Stoneman E, Rembecki RM, Mathew PA, Lindahl KF, Kumar V. Hybrid resistance: “negative” and “positive” signaling of murine natural killer cells. Semin Immunol. 1995;7(2):121–127.

Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, Kirby A, Daly MJ, Daley GQ. Histocompatible Embryonic Stem Cells by Parthenogenesis. Science. 2007;315(5811): 482–486. DOI: 10.1126/science.1133542.

Zhao Q, Wang J, Zhang Y, Kou Z, Liu S, Gao S. Generation of Histocompatible Androgenetic Embryonic Stem Cells Using Spermatogenic Cells. Stem Cells. 2009;28(2): 229-239. DOI: 10.1002/stem.283.

Ding C, Huang S, Qi Q, Fu R, Zhu W, Cai B, Hong P, Liu Z, Gu T, Zeng Y, Wang J, Xu Y, Zhao X, Zhou Q, Zhou C. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line. Stem Cells Dev. 2015;24(19):2307–2316. DOI: 10.1089/scd.2015.0031.

Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532(7597): 107–111. DOI: 10.1038/nature17408.

Ding C, Huang S, Qi Q, Fu R, Zhu W, Cai B, Hong P, Liu Z, Gu T, Zeng Y, Wang J, Xu Y, Zhao X, Zhou Q, Zhou C. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line. Stem Cells Dev. 2015;24(19): 2307–2316. DOI: 10.1089/scd.2015.0031.

Liu G, Wang X, Liu Y, Zhang M, Cai T, Shen Z, Jia Y, Huang Y. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens. Nucleic acids research. 2017;45(22):e180. DOI: 10.1093/nar/gkx857.

Tesarik J. Reproductive semi-cloning respecting biparental embryo origin: embryos from syngamy between a gamete and a haploidized somatic cell. Human Reproduction. 2002;17(8): 1933-1937. DOI: 10.1093/humrep/17.8.1933.

Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo G Z, Li T, Li X, Wang L, Zheng QY, Sheng C, Wu HJ, Liu Z, Liu L, Wang L, Wang XJ, Zhao XY, Zhou Q. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature. 2012;490: 407–411. DOI: 10.1038/nature11435.

Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang X, Li W, Zhou Q, Hu B. Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res. 2016;26(1):135–138. DOI: 10.1038/cr.2015.151.

Zhong C, Xie Z, Yin Q, Dong R, Yang S, Wu Y, Yang L, Li J. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Res. 2016;26(1): 131–134. DOI: 10.1038/cr.2015.132.

Horii T, Hatada I. Genome editing using mammalian haploid cells. International journal of molecular sciences. 2015; 16(10): 23604-23614. DOI: 10.3390/ijms161023604.

Zhong C, Li J. Efficient Generation of gene-modified mice by haploid embryonic stem cell-mediated semi-cloned technology. Methods Mol Biol. 2017;1498: 121-133. DOI: 10.1007/978-1-4939-6472-7_8.

Ishii T, Eto K. Fetal stem cell transplantation: Past, present, and future. World journal of stem cells. 2014;6(4): 404-420. DOI: 10.4252/wjsc.v6.i4.404.

Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell transplantation. 2011;20(5): 655-667. DOI: 10.3727/096368910X536473.

Brunstein CG, Petersdorf EW, DeFor TE, Noreen H, Maurer D, MacMillan ML, Ustun C, Verneris MR, Miller JS, Blazar BR, McGlave PB. Impact of allele-level HLA mismatch on outcomes in recipients of double umbilical cord blood transplantation. Biology of Blood and Marrow Transplantation. 2016;22(3): 487-92. DOI: 10.1016/j.bbmt.2015.09.025.

Dessels C, Alessandrini M, Pepper MS. Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem cells translational medicine. 2018;7(9): 643-650. DOI: 10.1002/sctm.17-0244.

Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal stem or stromal cells: toward a better understanding of their biology?. Transfusion Medicine and Hemotherapy. 2010;37(2): 75-83. DOI: 10.1159/000290897.

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells. 2004;22(7): 1330-1337. DOI: 10.1634/stemcells.2004-0013.

Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem cells. 2006;24(3): 781-792. DOI: 10.1634/stemcells.2005-0330.

Davies JE, Walker JT, Keating A. Concise Review: Wharton's Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem cells translational medicine. 2017;6(7): 1620-1630. DOI: 10.1002/sctm.16-0492.

Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M, Chaudhry GR. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. Journal of visualized experiments. 2017;122. DOI: 10.3791/55224.

Stubbendorff M, Deuse T, Hua X, Phan TT, Bieback K, Atkinson K, Eiermann TH, Velden J, Schröder C, Reichenspurner H, Robbins RC, Volk HD, Schrepfer S. Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells and Development. 2013;22(19): 2619-2629. DOI: 10.1089/scd.2013.0043.

Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell transplantation. 2011;20(5): 655-667. DOI: 10.3727/096368910X536473.

Zhou Y, Gan SU, Lin G, Lim YT, Masilamani J, Mustafa FB, Phua ML, Rivino L, Phan TT, Lee KO, Calne R, MacAry PA. Characterization of human umbilical cord lining-derived epithelial cells and transplantation potential. Cell transplantation. 2011;20(11-12): 1827-1841. DOI: 10.3727/096368910X564085.

Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. American Journal of Reproductive Immunology. 2018;80(4). DOI: 10.1111/aji.13003.

Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem cells. 2005;23(10): 1549–1559. DOI: 10.1634/stemcells.2004-0357.

Motedayyen H, Esmaeil N, Tajik N, Khadem F, Ghotloo S, Khani B, Rezaei A. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. BMC research notes. 2017;10(1):552. DOI: 10.1186/s13104-017-2880-6.

Bryzek A, Czekaj P, Plewka D, Komarska H, Tomsia M, Lesiak M, Sieroń AL, Sikora J, Kopaczka K Expression and co-expression of surface markers of pluripotency on human amniotic cells cultured in different growth media. Ginekol Pol. 2013;84(12):1012‐1024.

Lim IJ, Phan TT. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane. Cell transplantation. 2014;23(4-5): 497-503. DOI: 10.3727/096368914X678346.

Ventura Ferreira MS, Bienert M, Müller K, Rath B, Goecke T, Opländer C, Braunschweig T, Mela P, Brümmendorf TH, Beier F, Neuss S. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem cell research & therapy. 2018;9(1): 28. DOI: 10.1186/s13287-017-0757-1.

Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M, Kilic A, Tan T, Zhu H, Xie X. Transplantation of placenta‐derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. Journal of cellular and molecular medicine. 2016;20(1): 29-37. DOI: 10.1111/jcmm.12489.

Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. American Journal of Physiology-Heart and circulatory physiology. 2004;287(6): 2670-2676. DOI: 10.1152/ajpheart.01071.2003.

Tran TC, Kimura K, Nagano M, Yamashita T, Ohneda K, Sugimori H, Sato F, Sakakibara Y, Hamada H, Yoshikawa H, Hoang SN, Ohneda O. Identification of human placenta‐derived mesenchymal stem cells involved in re‐endothelialization. Journal of cellular physiology. 2011;226(1): 224-235. DOI: 10.1002/jcp.22329.

Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N, Ayame H, Iwasaki K, Taki A, Oshima N, Morita I. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem cell research & therapy. 2017;8(1): 219. DOI: 10.1186/s13287-017-0660-9.

Vegh I, Grau M, Gracia M, Grande J, De La Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer gene therapy. 2013;20(1): 8-16. DOI: 10.1038/cgt.2012.71.

Paris JL, de la Torre P, Manzano M, Cabañas MV, Flores AI, Vallet-Regí M. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta biomaterialia. 2016;15, іss. 33. P. 75-82. DOI: 10.1016/j.actbio.2016.01.017.

Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nature Reviews Molecular Cell Biology. 2018;19(9): 594-610. DOI: 10.1038/s41580-018-0020-3.

Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2(3): 198–210. DOI: 10.1016/j.scr.2009.02.002.

Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells // Experimental hematology. 2014;42(2): 74-82. DOI: 10.1016/j.exphem.2013.11.004.

Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Experimental hematology. 2008;36(6): 742-751. DOI: 10.1016/j.exphem.2008.03.010.

Abbott A. Doubt cast over tiny stem cells. Nature News. 2013;499(7459): 390. DOI: 10.1038/499390a.

Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R, Ratajczak J, Shin DM, Kucia M. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia. 2014;28(3): 473-484. DOI: 10.1038/leu.2013.255.

Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. The Cell Biology of Stem Cells. 2010;695: 155-168. DOI: 10.1007/978-1-4419-7037-4_11.

Wallenfang MR. Aging within the stem cell niche. Developmental cell. 2007;13(5): 603-604. DOI: 10.1016/j.devcel.2007.10.011.

Rumman M, Dhawan J, Kassem M. Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem cells. 2015;33(10): 2903-2912. DOI: 10.1002/stem.2056.

Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando T. mTORC1 controls the adaptive transition of quiescent stem cells from G 0 to G Alert. Nature. 2014;510(7505): 393-396. DOI: 10.1038/nature13255.

Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441(7097): 1068-1074. DOI: 10.1038/nature04956.

Bu P, Chen KY, Lipkin SM, Shen X. Asymmetric division: a marker for cancer stem cells?. Oncotarget. 2013;4(7): 950-951. DOI: 10.18632/oncotarget.1029.

Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, Winton DJ. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495(7439):65-69. DOI: 10.1038/nature11965.

Cuenca J, Le-Gatt A, Castillo V, Belletti J, Díaz M, Kurte M, Gonzalez PL, Alcayaga-Miranda F, Schuh CM, Ezquer F, Ezquer M. The reparative abilities of menstrual stem cells modulate the wound matrix signals and improve cutaneous regeneration. Frontiers in physiology. 2018;9:464. DOI: 10.3389/fphys.2018.00464.

Janebodin K, Horst OV, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PloS one. 2011;6(11). DOI: 10.1371/journal.pone.0027526.

Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development. 2014;141(13): 2559-2567. DOI: 10.1242/dev.104588.

Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M. Human epidermal neural crest stem cells (hEPI-NCSC)—characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Reviews and Reports. 2011;7(4):799-814. DOI: 10.1007/s12015-011-9255-5.

Sirinoglu Demiriz I, Tekgunduz E, Altuntas F. What is the most appropriate source for hematopoietic stem cell transplantation? Peripheral stem cell/bone marrow/cord blood. Bone marrow research. 2012;2012. DOI: 10.1155/2012/834040.

Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos University Medical Journal. 2018;18(3): e264–e277. DOI: 10.18295/squmj.2018.18.03.002.

De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells tissues organs. 2003;174(3): 101-109. DOI: 10.1159/000071150.

Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem cell research & therapy. 2015;6(1): 55. DOI: 10.1186/s13287-015-0066-5.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5): 861-872. DOI: 10.1016/j.cell.2007.11.019.

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-1920. DOI: 10.1126/science.1151526.

Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Developmental biology. 2002;241(1): 172-182. DOI: 10.1006/dbio.2001.0501.

Lin SL. Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation. Stem cells. 2011;29(11): 1645-1649. DOI: 10.1002/stem.744.

Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. Peer J. 2018;6. DOI: 10.7717/peerj.4370.

Kooreman NG, Kim Y, de Almeida PE, Termglinchan V, Diecke S, Shao NY, Wei TT, Yi H, Dey D, Nelakanti R, Brouwer TP, Paik DT, Sagiv-Barfi I, Han A, Quax PHA, Hamming JF, Levy R, Davis MM, Wu J. C. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell stem cell. 2018;22(4): 501-513. DOI: 10.1016/j.stem.2018.01.016.

Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, McPherson JD, Nagy A, Batada NN. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem cells. 2012;30(3): 435-440. DOI: 10.1002/stem.1011.

Sardo VL, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A. The effect of aging on human induced pluripotent stem cells. Nature biotechnology. 2017;35(1):69–74. DOI: 10.1038/nbt.3749.

Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal of Biological Chemistry. 2010;285(15): 11227-11234. DOI: 10.1074/jbc.M109.086389.

Li Z, Lu H, Yang W, Yong J, Zhang ZN, Zhang K, Deng H, Xu Y. Mouse SCNT ESCs have lower somatic mutation load than syngeneic iPSCs. Stem Cell Reports. 2014;2(4):399-405. DOI: 10.1016/j.stemcr.2014.02.005.

Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell stem cell. 2010;7(4):521–31. DOI: 10.1016/j.stem.2010.07.017.

Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews. Cancer. 2011;11(4):268-77. DOI: 10.1038/nrc3034.

Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochemical and biophysical research communications. 2009;383(2):157-62. DOI: 10.1016/j.bbrc.2009.02.156.

Horikawa I, Park KY, Isogaya K, Hiyoshi Y, Li H, Anami K, Robles AI, Mondal AM, Fujita K, Serrano M, Harris CC. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell death and differentiation. 2017;24(6):1017-1028. DOI: 10.1038/cdd.2017.48.

Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Schöler HR, Hayek A, Ding S. Generation of human‐induced pluripotent stem cells in the absence of exogenous Sox2. Stem cells. 2009;27(12):2992-3000. DOI: 10.1002/stem.240.

Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell research. 2011;21(1):196-204. DOI: 10.1038/cr.2010.142.

Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nature reviews Drug discovery. 2017;16(2):115-30. DOI: 10.1038/nrd.2016.245.

Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC developmental biology. 2010;10(1):81. DOI: 10.1186/1471-213X-10-81.

Lin SL, Chang DC, Ying SY, Leu D, Wu DT. MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer research. 2010;70(22):9473-82. DOI: 10.1158/0008-5472.CAN-10-2746.

Deng XY, Wang H, Wang T, Fang XT, Zou LL, Li ZY, Liu CB. Non-viral methods for generating integration-free, induced pluripotent stem cells. Current stem cell research & therapy. 2015;10(2):153-8.

Lim J, Kim J, Kang J, Jo D. Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Scientific reports. 2014;4. DOI: 10.1038/srep04361.

Liu X, Sun H, Qi J, Wang L, He S, Liu J, Feng C, Chen C, Li W, Guo Y, Qin D, Pan G, Chen J, Pei D, Zheng H. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nature cell biology. 2013;15(7):829-38. DOI: 10.1038/ncb2765.

Nagashima T, Shimizu K, Matsumoto R, Honda H. Selective elimination of human induced pluripotent stem cells using medium with high concentration of L-alanine. Scientific reports. 2018;8(1). DOI: 10.1038/s41598-018-30936-2.

Murray LMA, Krasnodembskaya AD. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells. 2019;37(1):14-25. DOI: 10.1002/stem.2922.

Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature communications. 2015;6. DOI: 10.1038/ncomms9472.

##submission.downloads##

Опубліковано

2022-05-05

Номер

Розділ

Статті