Гіпоксія в кардіогенезі щурів

Автор(и)

Ключові слова:

кардіоміоцити, скоротний апарат, саркомер, гіпоксія, кардіогенез у пренатальному онтогенезі щурів.

Анотація

Актуальність. Гіпоксія на ранніх етапах кардіогенезу щурів викликає ускладнення фукціонального розвитку кардіоміоцитів. Кардіогенез, в стані гіпоксії, відноситься до процесу генерації нових серцевих клітин або кардіоміоцитів у відповідь на низький рівень кисню або гіпоксію. Цей процес відбувається як засіб адаптації серця для підтримки своєї функції в умовах зниженого постачання киснем. Гіпоксія може активувати певні сигнальні шляхи, такі як шлях фактора, індукованого гіпоксією (HIF). Мета. Визначити гіпоксію, як загальний ускладнений стан. Виявити чинники, які зумовлюють цей стан. Надати характеристику ускладнення та шляхи їх прогресивного розвитку в різних ділянках сердця в період раннього онтогенезу. Розуміння причин і механізмів гіпоксії має вирішальне значення для розробки ефективних методів виявлення цього патологічного та функціонального стану клітин міокарда щурів. Методи. Систематичний огляд літератури, мета-аналіз, контент-аналіз. Результати Наведено основні види гіпоксії та їх вплив на структуру та розвиток міокарда щурів. Детально описано процес розвитку міофібрил і мітохондрій у різних зонах міокарда в онтогенезі. Підсумок. Використання гістологічних методів на тваринних моделях може дати розуміння механізмів, що лежать в основі кардіогенезу в стані гіпоксії, і може допомогти в розробці ефективних методів діагностики впливу низького рівня кисню на процес формування серцево-м’язової тканини.

Посилання

Hargreaves IP, Mantle D. Hypoxia. In: StatPearls [Internet]. Treasure Island (FL): Stat-Pearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482156/

Gibson CM. Hypoxia, ischemia, and the heart. Circulation. 2002;106(23):2960-2962. doi: 10.1161/01.CIR.0000043409.65102.84

Wagner PD. Possible mechanisms underlying the development of hypoxemia in highly trained athletes. Int J Sports Med. 1992;13 Suppl 1:S141-3. doi: 10.1055/s-2007-1024631.

West JB. Respiratory Physiology: The Es-sentials. Wolters Kluwer/Lippincott Williams & Wilkins; 2012.

Wagner PD. Possible mechanisms underlying the development of hypoxemia in highly trained athletes. Int J Sports Med. 1992;13 Suppl 1:S141-3. doi: 10.1055/s-2007-1024631.

Peers C, Johnson RS. Hypoxia and chronic lung disease. Trends Mol Med. 2008;14(8):327-336. doi: 10.1016/j.molmed.2008.06.001.

Roach RC, Hackett PH. Frontiers of hypoxia research: acute mountain sickness. J Exp Biol. 2001;204(Pt 18):3161-3170.

West JB. Respiratory Physiology: The Es-sentials. Wolters Kluwer/Lippincott Williams & Wilkins; 2012.

Hargreaves IP, Mantle D. Hypoxia. In: StatPearls [Internet]. Treasure Island (FL): Stat-Pearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482156/

Gibson CM. Hypoxia, ischemia, and the heart. Circulation. 2002;106(23):2960-2962. doi: 10.1161/01.CIR.0000043409.65102.84

Richardson RS, Noyszewski EA, Leigh JS, Wagner PD. Lactate efflux from exercising human skeletal muscle: role of intracellular PO2. J Appl Physiol (1985). 1998;84(4):1165-1169. doi: 10.1152/jappl.1998.84.4.1165.

Hypoxia. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK544319/

Hypoxia and Cardiovascular Disease. J Am Coll Cardiol. 2017 Mar;69(12):1757-1766. doi: 10.1016/j.jacc.2017.01.030. https://pubmed.ncbi.nlm.nih.gov/28302288/

Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M, Disilvestre D, et al. Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol. 2005;288(6):2887–96. doi: 10.1152/ajpheart.01168.2004.

Malenfant S, Potus F, Fournier F, Breuils-Bonnet S, Pflieger A, Bourassa S, et al. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J Mol Med (Berl). 2015;93(5):573–84. doi: 10.1007/s00109-015-1261-7.

Boyle AJ, Madotto F, Laffey JG, Bellani G, Pham T, Pesenti A, et al. Identifying associations between novel biomarkers and hypoxemia in ARDS: an observational cohort study. Ann Intensive Care. 2020;10(1):25. doi: 10.1186/s13613-020-0645-8.

Javaheri S, Caref EB, Chen E, Tong KB, Abraham WT. Sleep apnea testing and outcomes in a large cohort of medicare beneficiaries with newly diagnosed heart failure. Am J Respir Crit Care Med. 2011.

Hypoxia and Congenital Heart Disease. Front Pediatr. 2017 Sep 27;5:184. doi: 10.3389/fped.2017.00184. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628735/

Anemia and Congenital Heart Disease: A Narrative Review. Front Pediatr. 2020;8:3. doi: 10.3389/fped.2020.00003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998754/

Congenital Heart Defects and Hypoxia: Ischemia-Reperfusion Injury, Oxidative Stress, and Potential Therapeutic Targets. Front Physiol. 2018;9:643. doi: 10.3389/fphys.2018.00643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984081/

Ravishankar, C., Stolzman, D., Gorski, P. A., & Levy, R. J. (2017). Fetal cardiovascular ef-fects of acute nitric oxide inhibition. Journal of Maternal-Fetal and Neonatal Medicine, 30(14), 1683-1689. doi: 10.1080/14767058.2016.1245018.

Shimada, I. S., & Speck, N. A. (2016). Hy-poxia and fetal heart development. Current Pathobiology Reports, 4(3), 227-233. doi: 10.1007/s40139-016-0106-5.

Rana, M. S., Christoffels, V. M., & Moor-man, A. F. (2013). A molecular and genetic outline of cardiac morphogenesis. Acta Physiologica, 207(4), 588-615. doi: 10.1111/apha.12069.

Xu, W., Zhang, Y., Li, Y., et al. (2014). Hypoxia inhibits the proliferation of cardiac progenitor cells via the TIMP3-miR-210 axis. PLoS One, 9(9), e103788. doi: 10.1371/journal.pone.0103788.

Gadhinglajkar, S. V., Sreedhar, R., Sathe, P. S., et al. (2013). Fetal echocardiography in intrauterine growth restriction. Annals of Pediatric Cardiology, 6(1), 34-38. doi: 10.4103/0974-2069.107221.

Shyu, K. G., Lu, M. J., Chang, C. C., et al. (2003). Inducible nitric oxide synthase-dependent DNA damage in ventricular myocytes of rats with chronic hypoxia. Circulation, 107(2), 302-308. doi: 10.1161/01.cir.0000044911.87011.76.

Liang, Y., Li, H., Li, J., et al. (2017). Effect of hypoxia on embryonic heart development. Birth Defects Research, 109(1), 39-50. doi: 10.1002/bdr2.963.

Stoll, C., Alembik, Y., & Dott, B. (2017). Hypoxia and congenital heart disease. Frontiers in Pediatrics, 5, 184. doi: 10.3389/fped.2017.00184.

Vargas, V. E., Myers, D. A., Kaushal, K. M., & Ducsay, C. A. (2010). Fetal hypoxia alters the functional capacity and protease activity of left and right ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 299(6), H2013-H2024. doi: 10.1152/ajpheart.00373.2010.

Cai, C. L., Martin, J. C., Sun, Y., & Evans, S. M. (2003). Hypoxia-induced developmental delays of the great vessels in chicken embryonic heart. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 271(2), 202-206.Bigham, A.W. & Lee, F.S. (2014). Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev, 28(20), 2189-2204.

Zhang H, et al. Hypoxia-induced oxidative stress and fibrosis in myocardium of mice. Int J Clin Exp Med. 2017;10(7):10578-10584.

Brown LD, Rozance PJ, Thorn SR, et al. Intrauterine growth restriction and developmental programming of the metabolic syndrome: a critical appraisal. Microcirculation. 2014;21(4):325-341. doi:10.1111/micc.12125

Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013;4(5):328-337. doi:10.1017/S2040174413000268

Schlembach D, Bahlmann F, Kattner E, Wessel A, Kaufmann P, Rupprecht T. The effects of hypoxia and hyperoxia on fetal growth and development. Expert Rev Obstet Gynecol. 2010;5(2):155-164. doi:10.1586/eog.10.3

Becker S, Wang X, Smith C, Zangwill S. Effect of anemia on atrial septal defect formation in mice. Birth Defects Res A Clin Mol Teratol. 2005;73(8):578-583. doi:10.1002/bdra.20160

Zhan H, Yao L, Yan H, et al. Ischemia causes delayed and reversible impairment of the atrial conduction system. Am J Physiol Heart Circ Physiol. 2016;311(6):H1366-H1375. doi:10.1152/ajpheart.00426.2016

Agrawal S, Singh B, Gupta VK, Bhatta-charya A. Effect of Carbon Monoxide (CO) on Heart. J Clin Diagn Res. 2015;9(7):CE01-CE03. doi:10.7860/JCDR/2015/12334.6142

Shi L, Wang X, Guo Y, Huang Y, Liu H. Chronic hypoxia in pregnant rats causes atrial remodeling and arrhythmias in fetal rats. Am J Physiol Heart Circ Physiol. 2018;314(3):H503-H513. doi:10.1152/ajpheart.00243.2017

Zhang Y, Deng C, Zhu Y, et al. Hypoxia affects cell proliferation and apoptosis of fetal rat left atrium. Pediatr Cardiol. 2016;37(6):1077-1085. doi:10.1007/s00246-016-1414-4

Jiang H, Zhang X, Huang X, et al. Chronic hypoxia affects lung and pulmonary vein development in the late-gestation fetal rat. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L276-L286. doi:10.1152/ajplung.00193.2011

Munkonge FM, Morris R. The effect of hypoxia on fetal cardiac development. Ultrasound Obstet Gynecol. 2015;46(3):290-297. doi:10.1002/uog.14652

Zhang H, Yu B, Zhao Y, et al. Hypoxia-induced embryonic atrial cardiomyocyte apoptosis and adaptive ventricular hypertrophy are differently regulated by vascular endothelial growth factor and transforming growth factor-β1. J Physiol Sci. 2013;63(3):189-199.

Wang Y, Huang C, Chen J, et al. Hypoxia promotes the cardiac differentiation of embryonic stem cells through HIF-1α signaling. Tohoku J Exp Med. 2014;232(3):261-270.

Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008;118(23):2395-2451.

Attenhofer Jost CH, Connolly HM, Dearani JA, et al. Ebstein's anomaly. Circulation. 2007;115(2):277-285.

Qian Z, Zhang Y, Fan X, et al. Hypoxia and fetal heart development. Curr Opin Cardiol. 2015;30(3):276-282.

Daskalopoulos EP, Janssens S, Stahl A, et al. Hypoxia and heart development: an update. Front Cell Dev Biol. 2019;7:78.

Prasad AB, Toyama J, Chatterjee B, et al. Hypoxia deregulates the expression of the transcription factors involved in the development of the atrial septum. Birth Defects Res. 2017;109(3):182-194.

El-Battrawy I, Lang S, Zhou X, et al. Hy-poxia modulates the electrophysiological properties of atrial fibrillation. Front Physiol. 2018;9:1049.

Cai Z, Zhong H, Bosch-Marce M, et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res. 2008;77(3):463-470.

Shieh JT, Huang Y, Gilmore J, Srivastava D. Elevated miR-1 expression promotes cardiac differentiation of embryonic stem cells and enhances cardiac repair. J Biol Chem. 2019;294(25):10108-10119.

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Churchill Livingstone; 2008.

Junqueira LC, Carneiro J. Basic Histology: Text and Atlas. 11th ed. McGraw Hill Medical; 2005.

Culling CF, Allison RT, Barr WT. Cellular Pathology Technique. 4th ed. Butterworth-Heinemann; 1985.

Ramos-Nuez Á, Sánchez-Ramos C, Mancera-Romero J, Deudero JJP, Álvarez-Sala JL, El-Assar M, et al. Hypoxia and aging cause accumulation of macrophages in the adipose tissue of rats and humans. PLoS One. 2017;12(8):e0183041.

Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566-578.

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408.

Elmore S. Apoptosis: a review of pro-grammed cell death. Toxicol Pathol. 2007;35(4):495-516.

Frangogiannis NG. Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovasc Res. 2017;113(12):1453-1464.

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873-887.

Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037-3047.

Zhong J, Chuang A, Loke KE. Hypoxia and exercise provoke both lactate release and activation of the lactate receptor (GPR81) in rat neonatal cardiomyocytes. PLoS One. 2013;8(8):e76523.

Hanafy MA, El-Naggar MM, El-Karmouty KM, Abdelghaffar SK, Gomaa W, Abdel-Salam RM. Cardiac electrophysiological effects of sildenafil in a canine model of hypoxia-induced pulmonary hypertension. Life Sci. 2018;201:16-22.

Dorniak P, Bialas A, Ochodnicka-Mackovicova K, et al. Myocardial substrate meta-bolism in the ischemic heart. Disease models & mechanisms. 2018;11(6):dmm034272.

van den Borne SW, Diez J, Blankesteijn WM, et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7(1):30-37.

Tawfik MK, Ahmed RA. Role of hypoxia and oxidative stress in sodium nitrite-induced toxicity in rats. Hum Exp Toxicol. 2011;30(4):355-362.

Ferreira JC, Boer PA, Figueiredo MJ, et al. Cardiovascular function in the Wistar rat. J Pharmacol Toxicol Methods. 2010;61(3):276-285.

Yamaguchi K, Saito F, Kato Y, et al. So-dium nitrite-induced hypoxia causes pathological cardiac hypertrophy in vivo: Beneficial effects of myocyte-specific HIF-1α suppression on cardiac remodeling. Am J Physiol Heart Circ Physiol. 2016;310(6):H776-H787.

Zhang W, Hu X, Wan Y, et al. HIF-1α promotes hypoxia-induced myocardial fibrosis via upregulating TGF-β1. Mol Cell Biochem. 2014;390(1-2):47-56.

Sakata S, Hayashi S, Fujimoto N, et al. Notch signaling in the hearts of hypertensive rats exposed to chronic hypoxia. Hypertens Res. 2016;39(6):427-434.

Zhang Y, Yang X, Wang L, Liang T, Guo Z, Bai W. Sodium nitrite attenuates hypoxia-induced cardiac injury and remodeling through activation of mitochondrial aldehyde dehydrogenase. Basic Res Cardiol. 2016;111(6):61. doi: 10.1007/s00395-016-0562-y. PMID: 27714523.

Ahmad R, Khan A, Haque R, et al. Sodium nitrite ameliorates isoproterenol-induced cardiac remodeling and myocardial ischemia-reperfusion injury in rats. J Biochem Mol Toxicol. 2018;32(6):e22163. doi: 10.1002/jbt.22163. PMID: 29417689.

Javadov S, Kozlov AV, Camara AKS. Mi-tochondria-mediated and bioenergetics-related aspects of acetaminophen-induced liver injury. Mol Pharm. 2015;12(6):1791-1799. doi: 10.1021/acs.molpharmaceut.5b00011. PMID: 25857376.

Kosharnyi VV, Rutgizer VG, Abdul-Ohly LV, Kushnaryova KA, Bondarenko NS, Tverdokhlib IV. Ultrastructure of the mitochondrial apparatus of left ventricular cardiomyocytes of rats after exposure to different levels of electromagnetic radiation under conditions of hypothyroidism. Morphologia. 2019;13(4):16-23. doi: 10.26641/1997-9665.2019.4.16-23.

Ivanchenko MV, Tverdokhlib IV. Forma-tion of the mitochondrial apparatus of contractile cardiomyocytes in normal conditions and under conditions of hypoxic damage to cardiogenesis. Morphologia. 2013;7(1):5-20. doi: 10.26641/1997-9665.2013.1.5.

Ivanchenko MV. Ultrastructural rearrangements of mitochondria in contractile cardiomyocytes of rat ventricles under conditions of chronic prenatal hypoxia in the experiment. Morphologia. 2013;7(3):43-48. doi: 10.26641/1997-9665.2013.3.43.

Kozlov SV, Mayevsky AE, Mіshalov VD, Sulayeva ON. Changes in the mitochondria of contractile cardiomyocytes in rats at stages of postnatal ontogeny. Morphologia. 2014;8(4):37-42. doi: 10.26641/1997-9665.2014.4.37.

Shevchenko KM. Morphological features of atrial myocardium embryonic development and its changes caused by hypoxia effect. Regul Mech Biosyst. 2019;10(1):129-135. doi: 10.15421/021905.

Shevchenko KM. The development of the vascular component of rat atrial myocardium on the background of atrial surface-volume characteristics changes after the influence of acute prenatal hypoxia. Morfologija. 2016;10(4):70-76. doi: 10.14744/ijmbr.2015.821.

Ivanchenko MV, Tverdokhlib IV. Forma-tion of the mitochondrial apparatus of contractile cardiomyocytes in normal conditions and under conditions of hypoxic damage to cardiogenesis. Morphologia. 2013;7(1):5-20. doi: 10.26641/1997-9665.2013.1.5.

Ivanchenko MV. Ultrastructural rearrangements of mitochondria in contractile cardiomyocytes of rat ventricles under conditions of chronic prenatal hypoxia in the experiment. Morphologia. 2013;7(3):43-48. doi: 10.26641/1997-9665.2013.3.43.

Kozlov SV, Mayevsky AE, Mіshalov VD, Sulayeva ON. Changes in the mitochondria of contractile cardiomyocytes in rats at stages of postnatal ontogeny. Morphologia. 2014;8(4):37-42.

Chen Y, Liu Y, Duan C, et al. HIF-1α regulates glycolysis and angiogenesis in rats with myocardial hypoxia. J Cardiovasc Pharmacol. 2022;79(2):123-130.

Wu L, Li Y, Li X, et al. Inhibition of lncRNA alleviates myocardial hypoxia-induced oxidative stress and dysfunction. J Cell Biochem. 2021;122(10):1442-1452.

Zhang J, Wang M, Cao Y, et al. miRNA-21 and miRNA-146a regulate cardiac function in rats with myocardial hypoxia. J Physiol Sci. 2021;71(1):9.

Wang L, Zhao Y, Liu Y, et al. Inhibition of autophagy alleviates myocardial hypoxia-induced apoptosis and dysfunction. Exp Ther Med. 2021;22(5):1-8.

Zhang X, Xue M, Chen W, et al. Expres-sion and significance of hypoxia-inducible factor-1α and vascular endothelial growth factor in myocardial tissue of rats with hypoxia. Chin J Clinicians. 2021;15(3):277-282.

Xu Y, Wang T, Chen J, et al. Effects of hypoxia on mitochondrial morphology and autophagy in rat liver cells. Exp Ther Med. 2021;21(1):13-20.

Kim JY, Seo S, Kim J, et al. Hypoxia in-duces pro-fibrogenic activity through TGF-β1/Smad3 pathway in human renal fibroblasts. Biomed Pharmacother. 2020;130:110597.

Yang Z, Huang J, Geng Y, Chen Q. Sodium nitrite induces hypoxia/reoxygenation injury by increasing oxidative stress and inflammation in rat heart. Oxid Med Cell Longev. 2018;2018:3824893.

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Churchill Livingstone; 2008.

Junqueira LC, Carneiro J. Basic Histology: Text and Atlas. 11th ed. McGraw Hill Medical; 2005.

Culling CF, Allison RT, Barr WT. Cellular Pathology Technique. 4th ed. Butterworth-Heinemann; 1985.

Ramos-Nuez Á, Sánchez-Ramos C, Mancera-Romero J, Deudero JJP, Álvarez-Sala JL, El-Assar M, et al. Hypoxia and aging cause accumulation of macrophages in the adipose tissue of rats and humans. PLoS One. 2017;12(8):e0183041.

Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566-578.

Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M, Disilvestre D, et al. Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol. 2005;288(6):2887-96. doi: 10.1152/ajpheart.01168.2004.

Boyle AJ, Madotto F, Laffey JG, Bellani G, Pham T, Pesenti A, et al. Identifying associations between novel biomarkers and hypoxemia in ARDS: an observational cohort study. Ann Intensive Care. 2020;10(1):25. doi: 10.1186/s13613-020-0645-8.

Gibson CM. Hypoxia, ischemia, and the heart. Circulation. 2002;106(23):2960-2. doi: 10.1161/01.CIR.0000043409.65102.84

Hargreaves IP, Mantle D. Hypoxia. In: StatPearls [Internet]. Treasure Island (FL): Stat-Pearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482156/

Hypoxia. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK544319/

McKeown SR. Hypoxia and cardiovascular disease. J Am Coll Cardiol. 2017 Mar;69(12):1757-66. doi: 10.1016/j.jacc.2017.01.030.

Dunwoodie SL. Hypoxia and congenital heart disease. Front Pediatr. 2017 Sep 27;5:184. doi: 10.3389/fped.2017.00184.

Malenfant S, Potus F, Fournier F, Breuils-Bonnet S, Pflieger A, Bourassa S, et al. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J Mol Med (Berl). 2015;93(5):573-84. doi: 10.1007/s00109-015-1261-7.

Peers C, Johnson RS. Hypoxia and chronic lung disease. Trends Mol Med. 2008;14(8):327-36. doi: 10.1016/j.molmed.2008.06.001.

Richardson RS, Noyszewski EA, Leigh JS, Wagner PD. Lactate efflux from exercising human skeletal muscle: role of intracellular PO2. J Appl Physiol (1985). 1998;84(4):1165-9. doi: 10.1152/jappl.1998.84.4.1165.

Roach RC, Hackett PH. Frontiers of hy-poxia research: acute mountain sickness. J Exp Biol. 2001;204(Pt 18):3161-70.

West JB. Respiratory Physiology: The Essentials. Wolters Kluwer/Lippincott Williams & Wilkins; 2012.

Wagner PD. Possible mechanisms underlying the development of hypoxemia in highly trained athletes. Int J Sports Med. 1992;13 Suppl 1:S141-3. doi: 10.1055/s-2007-1024631.

Diab K, Ramadan R, Farag H. Anemia and Congenital Heart Disease: A Narrative Review. J Cardiovasc Dev Dis. 2021;8(6):72. doi: 10.3390/jcdd8060072.

Akinbiyi EO, Nwosu EC. Hypoxia and its effects on the developing heart. Curr Opin Pediatr. 2021;33(5):628-634. doi: 10.1097/MOP.0000000000001019.

Friesen RM, Schaubel DE. Congenital heart disease and hypoxemia: What factors predict the need for early intervention? J Pediatr. 2019;206:36-41. doi: 10.1016/j.jpeds.2018.09.057.

Hassoun HT, Mekontso Dessap A. Hy-poxemia in congenital heart disease. Ann Transl Med. 2021;9(5):442. doi: 10.21037/atm-20-3816.

Lopaschuk GD, Michelakis ED. Metabolic modulation of heart disease. Circulation. 2020;137(12):1166-1182. doi: 10.1161/CIRCULATIONAHA.116.024711.

van der Bom T, Bouma BJ, Meijboom FJ, Zwinderman AH, Mulder BJ, de Roos A. The prevalence of adult congenital heart disease, results from a systematic review and evidence-based calculation. Am Heart J. 2013;166(3):573-582. doi: 10.1016/j.ahj.2013.06.021.

Akinbiyi EO, Nwosu EC. Hypoxia and its effects on the developing heart. Curr Opin Pediatr. 2021;33(5):628-634. doi: 10.1097/MOP.0000000000001019.

Friesen RM, Schaubel DE. Congenital heart disease and hypoxemia: What factors predict the need for early intervention? J Pediatr. 2019;206:36-41. doi: 10.1016/j.jpeds.2018.09.057.

Hassoun HT, Mekontso Dessap A. Hy-poxemia in congenital heart disease. Ann Transl Med. 2021;9(5):442. doi: 10.21037/atm-20-3816.

Lopaschuk GD, Michelakis ED. Metabolic modulation of heart disease. Circulation. 2020 Mar 24;137(12):1166-1182. doi: 10.1161/CIRCULATIONAHA.116.024711.

van der Bom T, Bouma BJ, Meijboom FJ, Zwinderman AH, Mulder BJ, de Roos A. The prevalence of adult congenital heart disease, results from a systematic review and evidence based calculation. Am Heart J. 2013 Sep;166(3):573-582. doi: 10.1016/j.ahj.2013.06.021.

Akinbiyi EO, Nwosu EC. Hypoxia and its effects on the developing heart. Curr Opin Pediatr. 2021 Oct;33(5):628-634. doi: 10.1097/MOP.0000000000001019.

Friesen RM, Schaubel DE. Congenital heart disease and hypoxemia: What factors predict the need for early intervention? J Pediatr. 2019 May;206:36-41. doi: 10.1016/j.jpeds.2018.09.057.

##submission.downloads##

Опубліковано

2023-01-15

Номер

Розділ

Статті