Характер травматичного ушкодження шкіри, етапи її регенерації та особливості при мінно-вибуховій травмі

Автор(и)

  • В.А. Пастухова Національний університет фізичного виховання і спорту України, Ukraine https://orcid.org/0000-0002-4091-913X
  • О.В. Кучеренко Національний університет фізичного виховання і спорту України, Ukraine

Ключові слова:

мінно-вибухова травма, шкіра, опік, рана, забій, морфологія, регенерація

Анотація

Мінно-вибухова травма викликає комбіноване ушкодження багатьох структур організму і часто супроводжується прямим ушкодженням цілісності шкіри. При травмуванні м'яких тканин закритого характеру виникає забій шкіри в поєднанні з ураженням багатьох внутрішніх органів.  У надзвичайній ситуації вибуху головна увага під час порятунку постраждалих військовослужбовців або цивільних осіб скерована на забезпечення їх виживання та підтримання життєво важливих функцій організму. При цьому переважна більшість ушкоджень шкіри підлягає відтермінованій увазі медичних працівників. У тих випадках, коли загальний покрив не зазнає безпосередніх опікових або інших ранових ушкоджень, що загрожують життю, структурно-функціональні порушення різних компонентів шкіри взагалі можуть залишатися без адекватної корекції протягом тривалого часу. За цих обставин слід пам’ятати, що шкіра є найбільшим органом організму та виконує низку важливих системних функцій, пошкодження яких критично впливає на стан постраждалого після мінно-вибухової травми, включаючи тривалий реабілітаційний період. На сьогодні відомості про характер структурно-функціональних змін шкіри у постраждалих внаслідок мінно-вибухової травми залишаються вкрай обмеженими, що не дозволяє вжити адекватних заходів їх корекції. Визначення провідних тканинних і клітинних перебудов структури шкіри в залежності від характеру мінно-вибухового ураження, його інтенсивності, вікового фактора та статі постраждалого, супутніх розладів виступає як нагайна потреба сьогодення і актуальна медична проблема.

Посилання

Guriev SO, Kravtsov DI, Kazachkov VE. [Mine blast injury as a result of modern combat op-erations on the example of an anti-terrorist operation in Eastern Ukraine. Message 1. Clinical-epidemiological characteristics of victims with mine-explosive injury at the early hospital stage of medical care]. Trauma. 2015;16(6). Ukrainian.

Ngo T, Mendis P, Gupta A, Ramsay J. Blast loading and blast effects on structures – an over-view. ESME. 2007;7:76-91.

Ramasamy A, Hill AM. Evaluating the effect of vehicle modification in reducing injuries from landmine blasts. An analysis of 2212 incidents and its application for humanitarian purposes. Accident Analysis and Prevention. 2011;43:1878-86.

Bisyk SP, Davydovskyi LS, Shabytskyi VR. [Study of the design of a protective anti-mine screen]. Military and technical collection. 2015;12:110-7. Ukrainian.

Bisyk SP. [Criteria for injury to the human body during shock and explosive loads. Weapon systems and military equipment]. 2015;1(41):153-9. Ukrainian.

Summary of global armoured vehicle market report 2013. Available: http://www.defenceiq.com/ amouredvehicles/articles/summary - of-global-armoured-vehicle-market-report-2/&mac=DFIQ_ OI_Featured_2011&utm_source=defenceiq.pdf.

Elsayed NM, Atkins J, editors. Explosion and blast-related injuries: effects of explosion and blast from military operations and acts of terrorism. Academic press is an imprint of Elsevier, 2008. 380 p.

Ramasamy A, Hill AM, Hepper AE, Bull AMJ, Clasper JC. Blast mines: a background for clinicians on physics, injury mechanisms and vehicle protection. J. R. Army Med. Corps. 2009;155:258-64.

Mironov VI, Gileva II. [Wound process: modern aspects of pathogenesis]. Siberian Medical Journal. 2009;6:20–6. Russian.

Tverdokhlib IV, Makarchuk OI. [Determining the stage of involutive changes of skins on the basis of morphological criteria and for the auxiliary apparatus "Light Check-up"]. Morphologia. 2010;4(4):57–66. Ukrainian.

Kramar SB, Volkov KS, Kotik AO. [Histological and histochemical changes in the urticaria of the ear in the dynamics after experimental thermal injury]. World of Medicine and Biology. 2014;10(4):182-5. Ukrainian.

Adam JS, Dagum AB. Current Management of Acute Cutaneous Wounds. N. Engl. J. Med. 2008;359:1037–46.

Fistal NM. [Treatment of optic convales-cents: the current state of the problem]. Bukovinian Medical Bulletin. 2009;13(30:94–9. Ukrainian.

Netyukhaylo LG. [Relationship between ear worms in experimental opiate ailments]. Young scientists. 2014;3(6):144–5. Ukrainian.

Vyas KS, Vasconez HC. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare. 2014;2(3):356–400.

Moustafa MG, Fouda R, Wittke D. Use of chitosan/polyamine biopolymers based cotton as a model system to prepare antimicrobial wound dressing. Schollmeyer International Journal of Diabetes Mellitus. 2009;1:61–4.

Hnin-Ei T, Hanif ZM, Shiow-Fern A. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. International Journal of Pharmaceutics. 2012;434:375–83.

Harish Prashanth KV, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential. Trends in Food Scie. Tech. 2007;18:117–131.

Honarkar H, Barikani M. Applications of biopolymers I: chitosan. Monatsh Chem. 2009;140:1403–20.

Francesko A, Tzanov T. Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering. Advances in Biochemical Engineer-ing/Biotechnology. 2011;125:1–27.

Chen RN, Wang GM, Chen CH. Develop-ment of N, O-(carboxymethyl) chitosan/collagen-matrixes as a wound dressing. Biomacromole-cules. 2006;7:1058–64.

Watthanaphanit A, Supaphol P, Tamura H. Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J. Appl. Polym. Sci. 2008;110:890.

Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement / C. C. Wang, C. H. Su, C. C. Chen [et al.] // J. Biomed. Mater. Res. – 2008. – Vol. 84A. – Р. 1006–1017.

Shin-Yeu O, Jian Wu, Moochhala SM. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–32.

Boucard N, Vitona C, Agayb D. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. 2007;28:3478–88.

Rodrigues AP, Genari SC, Paulo NM. Evaluation of Cell Growth Characteristics on Chitosan-Alginate Membranes to Assess Their Potential Application on Highly Exuding Skin Lesions and In Vivo Evaluation in Wounded Cat. Cells and Culture ESACT Proceedings. 2010;4:789–94.

Reinke JM, Sorg H. Wound Repair and Regeneration. Eur. Surg. Res. 2012;49:35–43.

Church D, Elsayed S, Reid O. Burn Wound Infections. Clinical microbiology reviews. 2006;8:403–34.

Boateng JS, Matthews KH, Stevens NE. Wound Healing Dressings and Drug Delivery Sys-tems: A Review. Journal of Pharmaceutical Sciences. 2008;97(8):2892-923.

Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 2009;10(3):207–17.

Orgill DP. Excision and Skin Grafting of Thermal Burns. N. Engl. J. Med. 2009;360:893–901.

Barrientos S, Stojadinovic O, Golinko MS. Growth factors and cytokines in wound healing. Wound Rep. Reg. 2008;16:585–601.

Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development. 2013;140:1517–27.

Arun M, Satish S, Anima P. Herbal Boon For Wounds. Int. J. Pharm. Pharm. Sci. 2013;5(2):1–12.

Gurtner GC, Werner S, Barrandon Y. Wound repair and regeneration. Nature. 2008;453:314–21.

Nguyen DT, Orgill DP, Murphy GF. The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. Biomaterials For Treating Skin Loss, 1st Edition: Woodhead Publishing (UK/Europe) and CRC Press (US), Cambridge/Boca Raton, 2009. – 25–57.

Longaker MT, Gurtner GC. Introduction: wound repair. Semin. Cell Dev. Biol. 2012;23:945.

Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface. 2007;4:413–37.

Schultz GS, Davidson JM, Kirsner RS. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19(2):134–48.

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009;37(5):32–9.

Ingersoll MA, Platt AM, Potteaux S. Monocyte trafficking in acute and chronic inflammation. Trends in immunology. 2011;32(10):470–7.

Ferguson MW, O’Kane S. Scar-free heal-ing: from embryonic mechanisms to adult therapeutic intervention. Phil. Trans. R. Soc. B. 2004;359:839–50.

Delavary BM, van der Veer WM, van Eg-mond M. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–62.

Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 2006;8:145–50.

Bayat A. Skin scarring. Br. Med. J. 2003;326:88–92.

Hinz B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 2007;127(3):526–37.

Pereira RF, Barrias CC, Granja PL. Ad-vanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond). 2013;8(4):603–21.

Hojo M, Inokuchi S, Kidokoro M. Induc-tion of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast. Reconstr. Surg. 2003;111:1638–45.

Guo S, Dipietro LA. Factors affecting wound healing. J. Dent. Res. 2010;89(3):219–29.

Benest AV, Salmo AH, Wang W. VEGF and angiopoietin-1 stimulate different angiogenic phenotypes that combine to enhance functional neovascularization in adult tissue. Microcirculation. 2006;13:423–37.

Yang L, Scott PG, Dodd C. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair. Regen. 2005;13:398–404.

Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 2013;70:2059–81.

Wu M, Ben Amar M. Growth and remodelling for profound circular wounds in skin. Biomech. Model. Mechanobiol. 2015;14:357–70.

Harty M, Neff AW, King MW. Regenera-tion or scarring: an immunologic perspective. Dev. Dyn. 2003;226:268–79.

Ogawa R, Akaishi A, Izumi M. Histologic analysis of keloids and hypertrophic scars. Ann. Plast. Surg. 2009;62:104–105.

Butler CE, Orgill DP. Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane. Adv. Biochem. Eng. Biotechnol. 2005;94:23–41.

Verhaegen PD, van Zuijlen PM, Pennings NM. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: an objective histopathological analysis. Wound Rep. Regen. 2009;17:649–56.

Shankar R, Melstrom KA, Gamelli RL. In-flammation and sepsis: past, present, and the future. J. Burn Care Res. 2007;28:566–71.

Ogawa R. Animal models of keloids and hypertrophic scars. Chin. J. Burn Care Res. 2008;29:1016–7.

Gawronska-Kozak B, Bogacki M, Rim GS. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 2006;14:265–76.

Eming SA, Krieg T, Davidson JM. Inflam-mation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol . 2007;127:514–25.

Sarrazy V, Billet F, Micallef L. Mechan-isms of pathological scarring: Role of myofibrob-lasts and current developments. Wound Rep. Reg. 2011;19:10–5.

Spyrou GE, Naylor IL. The effect of basic fibroblast growth factor on scarring. Br. J. Plast. Surg. 2002;55:275–82.

Barret JP, Herndon DN. Effects of burn wound excision on bacterial colonization and invasion. Plast. Reconstr. Surg. 2003;111:744–50.

Greenhalgh DG. American Burn Associa-tion consensus conference to define sepsis and infection in burns. J. Burn Care Res. 2007;28(6):776–90.

Kirketerp-Moller K, Jensen PO, Fazli M. Distribution, organization and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 2008;46(8): 2717-22.

Edwards R, Harding KG. Bacteria and wound healing. Curr.Opin. Infect. Dis. 2004;17(2):91–6.

Wibbenmeyer L. Prospective analysis of nosocomial infection rates, antibiotic use, and patterns of resistance in a burn population. J. Burn Care Res. 2006;27(2):152–60.

Zulkowski K. Skin bacteria: implications for wound care. Adv. Skin Wound Care. 2013;26(5):231–6.

Wysocki AB. Evaluating and managing open skin wounds: colonizationversus infection. AACN Clin. 2002;13:382–97.

Pangilinan R, Tice A, Tillotson G. Topical antibiotic treatment for uncomplicated skin and skin structure infections: review of the literature. Exp. Rev. Anti. Infect. Ther. 2009;7(8):957–65.

Murray CK, Roop SA, Hospenthal DR. Bacteriology of war wounds at the time of injury. Mil. Med. 2006;171:826–9.

Fistal EYa, Kozinets GP. [Combustiology]. Donetsk, 2006:236 p. Ukrainian.

Saffle JR. Closure of the excised burn wound: temporary skin substitutes. Clinics In Plastic Surgery. 2009;36:627–41.

Schaum KD. Should it be coded as a dressing or as a dermal/epidermal (substitute) tissue? Adv. Skin Wound Care. 2008;21(7):317–21.

Singer AJ, Dagum AB. Current manage-ment of acute cutaneous wounds. The New England Journal of Medicine. 2008;359:1037–46.

Hermans MH. Results of an internet survey on the treatment of partial thicknes sburns, fullthickness burns, and donorsites. Journal of Burn Care and Rehabilitation. 2007;28:835–47.

Sweeney IR, Miraftab M, Collyer GA. Critical review of modern and emerging absorbent dressings used to treat exuding wound. Int. Wound J. 2012;9:601–12.

Winter GD. Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193:293–4.

Winter GD, Scales GT. The effect of air drying and dressings on the surface of a wound. Nature. 1963;197:91-4.

McColl D, Cartlidge B, Connolly P. Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. International Journal of Surgery. 2007;5:316–22.

Okan D, Woo K, Ayello E. The Role of Moisture Balance in Wound Healing. Adv. Skin Wound Care. 2007;20(1).39–53.

Jayakumar R, Prabaharan M, Sudheesh Kumar RT. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances. 2011;29:322–37.

Fouda MG, R. Wittke, Knitteletal D. Use of chitosan/polyamine biopolymers based cotton as a model system to prepare antimicrobial wound dressing. International Journal of Diabetes Mellitus. 2009;1:61–4.

Hnin-Ei Thu, Mohd Hanif Zulfakar, Shiow-Fern Ng. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. International Journal of Pharmaceutics. 2012;434:375–83.

Drago H, Marın GH, Sturla F. The next generation of burns treatment: intelligent films and matrix, controlled enzymatic debridement, and adult stem cells. Transplantation Proceedings. 2010;42(1):345–9.

Kaur S, Dhillon GS. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Critical reviews in microbiology. 2014;40(2):155–75.

Ribeiro MP, Morgado PI, Miguel SP. Dex-tran-based hydrogel containing chitosan microparticles loaded with grow thfactors to be used in wound healing. Materials science & engineering C-vaterials for biological applications. 2013;33(5):2958–66.

Nacer KA, Mohamed M, Djamel T. Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: Pharmacological and toxicological tests. Burns. 2013;39(1):98–104.

Azuma K, Izumi R, Osaki T. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. J. Funct. Biomater. 2015;6(1):104–42.

Kurita K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Мarine Biotechnology. 2006;8:203–26.

Alsarra IA. Chitosan topical gelformulation in the management of burn wounds. International Journal of Biological Macromolecules. 2009;45(1):16–21.

Madhumathi K, Binulal NS, Nagahama H. Preparation and characterization of novel_α-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol. 2009;44:1–5.

Nagahama H, Kashiki T, Nwe N. Prepara-tion of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr. Polym. 2008;73:456–63.

Shalumon KT, Binulal NS, Selvamurugan N. Electrospinning of carboxymethylchi-tin/poly(vinylalcohol) nanofibrous caffolds for tissue engineering applications. Carbohydr. Polym. 2009;77:863–9.

Shalumon KT, Anulekha KH, Girish CM. Single step electrospinning of chito-san/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 2010;80:413–9.

Jayakumar R, Menon D, Manzoor K. Bio-medical applications of chitin and chitosannanomaterials – a short review. Carbohydr. Polym. 2010;82:227–32.

Dev A, Mohan JC, Sreeja V. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr. Polym. 2010;79:273–9.

Prabaharan M, Jayakumar R. Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int. J. Biol. Macromol. 2009;44:320–5.

Madhumathi K, Sudheesh Kumar PT, Abilash S. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J . Mater. Sci. Mater. Med. 2010;21:807–13.

Seda Tigli R, Karakecili A, Gumusdere-lioglu M. In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J. Mater. Sci.: мater. мed. 2007;18:1665–74.

Duan B, Wu L, Yuan X. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J. Biomed. Mater. Res. 2007;83A:868–78.

A study on the in vitro degradation of poly(L-lactide)/chitosan microspheres scaffolds / Zhu N, Cooper D, Chen XB. Front. Mater. Sci. 2013;7(1):76–82.

Pereda M, Ponce AG, Marcovich NE. Chitosan-gelatin compositesand bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 2011;25(5):1372–81.

Liza G. Ovington Advances in wound dressings. 2007;25:33–8.

Chung YC, Chen CY. Antibacterial cha-racteristics and activity of acid soluble chitosan. Bioresource Technology. 2008;99(8):2806–14.

Chum-Mei D, Lang-Zhen H, Ming Z. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers. 2007;69:583–9.

Anitha A, Divya Rani VV, Krishna R. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyland N, O-carboxymethyl chitosan nanoparticles. Carbohydr. Polym. 2009;78:672–7.

Je JY, Kim SK. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agriculturaland. Food Chemistry. 2006;54(18):6629–33.

Moussa SH, Tayel AA, Al-Turki AI. Evaluation of fungal chitosan as a biocontrol and antibacterial agent using fluorescence-labeling. International Journal of Biolоgical Macromolecules. 2013;54:204–8.

Thomas V, Yallapu W, Mohan SB. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. Journal of Biomaterials Science. Polymer Edition. 2009;20(14):2129–44.

Dong Y, Liu HZ, Xu L. A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin. Chem. Lett. 2010;2:1011–4.

Zheng LY, Zhu JF. Study of antimicrobial activity of chitosan with different molecular weight. Carbohydrate Polymers. 2003;54(4):527–30.

Kingkaew J, Kirdponpattara S, Sanchavanakit N. Effect of Molecular Weight of Chitosan on Antimicrobial Properties and Tissue Compatibility of Chitosan-impregnated Bacterial Cellulose Films. Biotechnology and Bioprocess Engineering. 2014;19:534–44.

Oleshko AN, Kornienko VV, Tkachenko YuA, Kurganskaya VA. [Modeling of skin defects in experimental animals]. Georgian Medical News. 2015;2(239):103–8. Russian.

Kornienko VV, Kalinkevich OV, Deyneka VM, Pogorelov MV. [Peculiarities of the cytological picture of the surface of the opium wound with vicarious chitosan slicks]. Ukrainian Medical Almanac. 2013;16(3):65–9. Ukrainian.

Kornienko VV, Kalinkevich OV, Pogorelov MV, Oleshko OM. [Planimetric and morphometric indicators of the dynamics of the process of engorgement of the modeled opium during the stagnation of chitosan membranes in animals of different age groups]. Morphologia. 2013;7(4):42–50. Ukrainian.

Kornіenko VV. [Peculiarities of regenerative processes in the optic wound of young animals with vicarious chitosan spits]. World of Medicine and Biology. 2014;4(46):107–13. Ukrainian.

Kornienko VV, Oleshko OM. [Peculiari-ties of the morphogenesis of the opium wound during stagnation of chitosan spits in the creatures of the old century]. Bulletin of problems of biology and medicine. 2014;1(113):275–8. Ukrainian.

Pogorelov MV, Kornenko VV. [Planimetric and morphometric indicators of the dynamics of the process of engulfment of the modeled opium during stagnation of chitosan membranes in creatures of different age groups]. Morphologia. 2015;9(2):58–61. Ukrainian.

Kornіenko VV. [Planimetry of the surface of the opioid wound with vicarious chitosan membranes]. Journal of clinical and experimental medical research. 2013;1(4):8–18. Ukrainian.

Makarchuk OI. ]Results of surgical correction of involutive changes in the skin of the middle zone of the face]. Ukrainian Medical Almanac. 2010;13(3):127-30. Ukrainian.

Makarchuk OI. [General properties and heterogeneity of subpopulations of skin fibroblasts]. Morphologia. 2007;1(3):12-20. Ukrainian.

Makarchuk OI, Naumenko LYu. [Struc-tural and functional characteristics of the skin of the temporal region in different age categories of women with concomitant pathology]. Ukrainian Medical Almanac. 2010;13(2):139-142. Ukrainian.

Makarchuk OI. [Spatial reconstruction of hemocapillaries of the skin of the face]. Morphologia. 2010;4(1):22-5. Ukrainian.

Makarchuk OI. [Structural and functional changes of the skin of the face and neck in women of different age groups]. Morphologia. 2008;2(1):62-73. Ukrainian.

Makarchuk OI. [Diagnosis of the degree of involutional changes of the skin of the face on the basis of morphological criteria and with the help of the "Light check-up" device]. Morphologia. 2008; 2(2):20-9. Ukrainian.

Makarchuk OI. [Pathomorphology of fa-cial skin in different age categories of women with concomitant internal pathology]. Morphologia. 2009;3(4):41-5. Ukrainian.

Makarchuk OI. [Morphology of the skin of the temporal region in different age categories of women with concomitant pathology]. Morphologia. 2010;4(2):28-38. Ukrainian.

Makarchuk OI. [Morphological characteristics of age-related changes in the composition of the microcirculatory channel of the skin of the face and neck]. Morphologia. 2007;1(4):59-62. Ukrainian.

Tverdokhleb IV, Naumenko LYu, Makarchuk AI. [Quantitative characteristics of the elements of the microcirculatory channel of the skin of the upper region in various age categories of women with concomitant pathology]. Russian Medical and Biological Bulletin named after I.P. Pavlov. 2010;2:8-12. Russian.

Usenko LV, Makarchuk OI. [Instrumental assessment of skin condition after composite facelift using perftoran in patients with a high risk of developing intraoperative and postoperative complications]. Ukrainian journal of surgery. 2010;1:53-8. Ukrainian.

Usenko LV, Makarchuk OI. [Postopera-tive dynamics of skin changes after performing various types of front lifting with intraoperative use of perftoran in risk group patients]. Bulletin of Vinnytsia National Medical University. 2010;14(2):301-5. Ukrainian.

Usenko LV, Makarchuk OI. [Dynamics of skin changes after open and endoscopic facelift using perftoran in patients with concomitant pathology]. World of medicine and biology. 2010;3:42-7. Ukrainian.

##submission.downloads##

Опубліковано

2023-01-15

Номер

Розділ

Статті