Механізми формування скоротливого апарату кардіоміоцитів при нормальному розвитку та після дії етанолу

Автор(и)

  • Д.Г. Марченко Дніпровський державний медичний університет, Україна https://orcid.org/0000-0001-7616-3613
  • О.А. Черкас Дніпровський державний медичний університет, Україна https://orcid.org/0000-0001-5422-0189
  • І.С. Хріпков Дніпровський державний медичний університет, Україна https://orcid.org/0000-0003-0378-8414
  • П.А. Кобеза Дніпровський державний медичний університет, Україна
  • С.Б. Морозова Дніпровський державний медичний університет, Україна

Ключові слова:

етанол, кардіоміоцити, міокард, міофібрили, мітохондрії, скоротливий апарат, Т-система

Анотація

Оглядова стаття присвячена аналізу наукових даних, що пов’язані з механізмом формування скоротливого апарату серця та впливом на нього такого тератогенного чинника, як етанол. Хронічна алкогольна інтоксикація викликає ураження майже усіх органів та систем організму, у тому числі впливаючи на серцево-судинну систему та викликаючи значні деструктивні порушення у складі її компонентів. Ведеться багато досліджень, пов’язаних з вивченням впливу етанолу на міокард. Хронічна алкогольна інтоксикація супроводжується розвитком алкогольної кардіоміопатії, що в свою чергу призводить до змін у складі серцевого м’яза. А саме, вживання алкоголю асоціюється з порушенням скоротливої функції міокарда та розвитком апоптозу кардіоміоцитів. З дією метаболіту алкоголю ацетальдегіду пов'язують порушення синтезу скоротливих білків, таких як актин та міозин, метаболізму ліпідів та функції мітохондрій, транспорту та зв'язування кальцію. Порушення ультраструктури органел після дії етанолу на кардіоміоцити, за даними багатьох авторів, характерне майже для всіх клітин міокарда. Кількість органел зменшувалась, відбувалося їх набряк, дезорганізація їхньої внутрішньої структури та частковий лізис. Найбільші дистрофічні зміни, що спостерігалися у паренхімі міокарда щурів, проявлялися у мозаїчної структурі міофібрил, порушення мембран Т-системи. Процес формування скоротливих компонентів міокарда та вплив на нього етанолу вивчається багатьма дослідниками, однак, деякі аспекти ще залишаються відкритими. Метою даної роботи було провести детальний аналіз літературних джерел, присвячених механізму розвитку скоротливого апарату серця, проаналізувати вплив етанолу на серце, в цілому, та на окремі його скоротливі компоненти.

Посилання

Conlon S. Teratogenic Effects of Prenatal Alcohol Exposure on Cardiac Innervation. Pedia-trics. 2021;3(147):368–369.

Fernández-Solà J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients. 2020;12(2):572.

Borisov AB. Myofibrillogenesis and reversible disassembly of myofibrils as adaptive reactions of cardiac muscle cells. Acta Physiol Scand. 1991;142(599):71–80.

Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A. 1997;94(17):9493–8.

Bryson CL, Mukamal KJ, Mittleman MA, Fried LP, Hirsch CH, Kitzman DW, Siscovick DS. The association of alcohol consumption and incident heart failure: the Cardiovascular Health Study. J Am Coll Cardiol. 2006;48:305–311.

Guzzo-Merello G, Cobo-Marcos M, Gallego-Delgado M, Garcia-Pavia P. Alcoholic cardiomyopathy. World J Cardiol. 2014;6(8):771–781.

Allwork SP. Heart Muscle: Ultrastructural Studies. J Anat. 1988;159:200–206.

Sanger JM, Mittal B, Pochapin MB, Sanger JW. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. Journal of Cell Biology. 1986;102(6):2053–2066.

Sanger JW, Kang S, Siebrands CC. How to build a myofibril. Journal of Muscle Research and Cell Motility. 2005;26(6):343–354.

Wang SM, Greaser ML, Schultz E, Bulinski JC, Lin JJ, Lessard JL. Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. The Journal of Cell Biology. 1988;107:1075–1083.

Wang K, Wright J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. 1988;107(6 Pt 1):2199–212.

Du A, Sanger JM, Sanger JW. Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol. 2008;318(2):236–46.

Morimoto S. Sarcomeric proteins and inherited cardiomyocytes. Cardiovascular Research. 2008;77:659–666.

Sanger JW, Wang J, Fan Y, White J, Mi-Mi L, Dube DK, Pruyne D. Assembly and maintenance OF myofibrils in striated muscle. The Actin Cytoskeleton. 2016;3(1):39–75.

Sparrow JC, Schöck F. The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol. 2009;10(4):293-–298.

Kellermayer M, Sziklai D, Papp Z, Decker B, Lakatos E, Mártonfalvi Z. Topology of interaction between titin and myosin thick filaments. J Struct Biol. 2018;203(1):46–53.

Granzier HL, Labeit S. The giant muscle protein titin is an adjustable molecular spring. Exerc Sport Sci Rev. 2006;34:50–53.

Sanger JW, Sanger JM. Green fluorescent proteins improve myofibril research. Biophotonics International. 2001;8(3):44–46.

Trinick J, Tskhovrebova L. Titin: a molecular control freak. Trends Cell Biol. 1999;9(10):377–80.

Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, Sanger JW. Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton. 2005;61(1):34–48.

Knupp C, Luther PK, Squire JM. Titin or-ganisation and the 3D architecture of the vertebrate-striated muscle I-band. Journal of Molecular Biology. 2002;322(4):731–739.

Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW, Russell MW, Bloch RJ. Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J. 2006;20:2102–2111.

Lange S, Ehler E, Gautel M. From A to Z and back? Multicompartment proteins in the sarcomere. Trends in Cell Biology. 2006;16(1):11–18.

LoRusso SM, Rhee D, Sanger JM, Sanger JW. Premyofibrils in spreading adult cardiomyo-cytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskeleton. 1997;37(3):183–98.

Rhee D, Sanger JM, Sanger JW. The pre-myofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton. 1994;28(1):1–24.

Sanger JW, Ayoob JC, Chowrashi P, Zu-rawski D, Sanger JM. Assembly of myofibrils in cardiac muscle cells. Adv Exp Med Biol. 2000;481:89–102.

Sanger JW, Chowrashi P, Shaner NC, Spalthoff S, Wang J, Freeman NL, Sanger JM. Myofibrillogenesis in skeletal muscle cells. Clin Orthop Relat Res. 2002;(403 Suppl):153–62.

Segel LD, Rendig SV, Choquet Y, Chacko K, Amsterdam EA, Mason DT. Effects of chronic graded ethanol consumption on the metabolism, ultrastructure, and mechanical function of the ratheart. Cardiovasc Res. 1975;9(5):649–663.

Borisov AB, Goncharova EI, Pinaev GP, Rumyantsev PP. [Changes in α-actinin localization and myofibrillogenesis in rat cardiomyocytes in cul-ture]. Tsitologia. 1989;31:642–646. Russian.

Huxley HE. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. Journal of Molecular Biology. 1963;7:281–308.

Ayettey AS, Navaratnam V. The T-tubule system in the specialized and general myocardium of the rat. Journal of Anatomy. 1978;127(Pt 1):125–140.

Brette F, Orchard C. T-Tubule Function in Mammalian Cardiac Myocytes. Circulation Research. 2003;92:1182–1192.

Sanger JW, Mittal B, Sanger JM. Formation of myofibrils in spreading chick cardiac myocytes. Cell Motility. 1984;4(6):405–416.

White J, Wang J, Fan Y, Dube D, Sanger JW, Sanger JM. Myofibril Assembly in Cultured Mouse Neonatal Cardiomyocytes. Anat Rec (Hoboken). 2018;301(12):2067-–2079.

Ehler E, Fowler VM, Perriard JC. Myofi-brillogenesis in the developing chicken heart: role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn. 2004;229(4):745–55.

Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image–processing techniques. Circ Res. 1999;84:266–275.

Conrad AH, Jaffredo T, Conrad GW. Differential localization of cytoplasmic myosin II isoforms a and B in avian interphase and dividing embryonic and immortalized cardiomyocytes and other cell types in vitro. Cell Motility and the Cytoskeleton. 1995;31(2):93–112.

Ferrans VJ, Hibbs RG, Weilbaecher DG, Black WC, Walsh JJ, Burch GE. Alcoholic cardiomyopathy; a histochemical study. Am Heart J. 1965;69:748–765.

Fernández-Solà J, Junyent JM, Urbano-Márquez A. Alcoholic myopathies. Curr Opin Neurol. 1996;9(5):400–5.

Hajnóczky G, Buzas CJ, Pacher P, Hoek JB., Rubin E. Alcohol and mitochondria in cardiac apoptosis: Mechanisms and visualization. Alcohol Clin. Exp. Res. 2005;29:693–701.

Piano MR. Alcohol's effects on the cardi-ovascular system. Alcohol Res. 2017;38:219–241.

Rubin E. Alcoholic myopathy in heart and skeletal muscle. N Engl J Med. 1979;301:28–33.

Segel LD, Rendig SV, Choquet Y, Chacko K, Amsterdam EA, Mason DT. Effects of chronic graded ethanol consumption on the metabolism, ultrastructure, and mechanical function of the ratheart. Cardiovasc Res. 1975;9(5):649–663.

Gardner JD, Mouton AJ. Alcohol effects on cardiac function. Compr Physiol. 2015;5(2):791–802.

Thomas AP, Rozanski DJ, Renard DC, Rubin E. Effects of ethanol on the contractile function of the heart: a review. Alcohol Clin Exp Res. 1994;18(1):121–31.

Ren J, Wold LE. Mechanisms of alcoholic heart disease. Adv. Cardiovasc. Dis. 2008;2:497–506.

Movva R, Figueredo VM. Alcohol and the heart: to abstain or not to abstain? Int J Cardiol. 2013;164:267–276.

Richardson PJ, Patel VB, Preedy VR. Al-cohol and the myocardium. Novartis Found. Symp. 1998;216:35–45.

##submission.downloads##

Опубліковано

2023-05-07

Номер

Розділ

Статті