Сигнальні шляхи, що залучені в діяльність зірчастих панкреатоцитів та взаємодію з раковими клітинами підшлункової залози.
DOI:
https://doi.org/10.26641/1997-9665.2021.2.7-15Ключові слова:
зірчасті панкреатоцити, пухлинні клітини підшлункової, мікрооточення пухлини, сигнальні шляхи, хіміорезистентністьАнотація
Актуальність. Активація, проліферація і міграційні можливості зірчастих панкреатоцітов (PSC) забезпечуються сигнальними молекулярними механізмами, що підтримують взаємодію пухлинних клітин із PSC і детермінують неопластичний процес. Мета. Огляд є продовженням серії статей, присвячених сучасному уявленню про роль та функції зірчастих панкреатоцитів, а саме їх залученню у взаємодію із раковими клітинами та сигнальним молекулярним шляхам, що забезпечують синергізм системи зірчастий панкреатоцит-ракова клітина. Методи. Обробка даних здійснювалася методом комплексного аналізу матеріалу. Результати. Сигнальний шлях Нedgehog забезпечує взаємодію PSC і пухлинних клітин, в якому задіяний провідний медіатор цього шляху - sHH (sonic hedgehog), надекспресія якого реєструється в пухлинній тканині підшлункової залози і забезпечує формування строми пухлини. Зірчасті панкреатоцити запускають також сигнальний шлях HGF / c-Met / сурвівін, що забезпечує інвазію і метастазування. Активація самих PSC може бути опосередкована серотоніном через сигнальний шлях RhoA / ROCK. У той час як проліферація та міграція цих клітин, спровокована алкоголем, HNE (еластазою нейтрофілів людини), PDGF, IL-33 регулюється шляхами MAP-кінази і PI3K. Сигнальний шлях Wnt сприяє накопиченню колагену. Через шлях AMPK / mTOR фактор FTY720 індукує апоптоз та пригнічує аутофагію зірчастих панкреатоцитів. Взаємодія PSC і пухлинних клітин опосередковується також через Notch і TGF-β, а через сигнальний шлях Hippo за участю чинників YAP / TAZ можливо придушення фіброзної активності PSC. Взаємодія зірчастих панкреатоцітов і пухлинних клітин відбивається в прямій кореляції між зниженням аутофагії і апоптозу зірчастих панкреатоцитів і придушенням інвазії і міграції пухлинних клітин. Така взаємодія може забезпечуватись ERK1 / 2 кіназою. Серед чинників, що виділяються пухлинними клітинами і викликають активацію PSC відзначають: фактор росту β1 (TGF-β1), білок PAI-1, фактор ініціації трансляції 4Е (eIF4E), sHH (залучає PSC в розгортання болю), екзосоми Exo-Pan і Exo-Mia (ангажують PSC в канцерогенез). Деактивація забезпечується медіаторним колонієстимулюючим фактором 1 (CSF1R, цитокин). У свою чергу зірчасті панкреатоцити виділяють хемокін CXCL1, стимулюючий міграцію та інвазію пухлинних клітин, екзосоми з безліччю miRNA, що стимулюють проліферацію, міграцію ракових клітин. Підсумок. Активація зірчастих панкреатоцитів, яка необхідна для реалізації їх фібротических функцій, забезпечується через сигнальний шлях RhoA / ROCK за допомогою серотоніну. У регуляції активності зірчастих панкреатоцитів задіяні також шлях Hippo (активація) і AMPK / mTOR (придушення аутофагії і активація апоптозу). Взаємодія між пухлинними клітинами і зірчастими панкреатоцитами здійснюється через сигнальні шляхи Нedgehog, Notch і TGF-β; регуляція інвазії і метастазування ракових клітин забезпечує сигнальний шлях HGF / c-Met / сурвівін.
Посилання
Masamune A, Shimosegawa T. Pancreatic stellate cells: A dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol. 2015; 39(1):S98–S103.
Xue R, Jia K, Wang J, Yang L, Wang Y, Gao L, Hao J. A Rising Star in Pancreatic Diseases: Pancreatic Stellate Cells. Front Physiol. 2018, Jun 18; 9:754.
Thomas D, Radhakrishnan P. Pancreatic Stellate Cells: The Key Orchestrator of the Pancreatic Tumor Microenvironment. Adv Exp Med Biol. 2020; 1234:57–70.
Cortes E, Lachowski D, Robinson B, Sarper M, Teppo JS, Thorpe SD, Lieberthal TJ, Iwamoto K, Lee DA, Okada-Hatakeyama M, Varjosalo MT, Del Río Hernández AE. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep. 2019 Jan; 20(1):e46557.
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev. 2018 Dec; 10(6):1695–1711.
Han L, Ma J, Duan W, Zhang L, Yu S, Xu Q, Lei J, Li X, Wang Z, Wu Z, Huang JH, Wu E, Ma Q, Ma Z. Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway. Oncotarget. 2016 Apr 5; 7(14):18146–18158.
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014 Jun 16; 25(6):735–47.
Jakubowska MA, Ferdek PE, Gerasimenko OV, Gerasimenko JV, Petersen OH. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biol. 2016 Aug; 6(8):160149.
Yang XP, Liu SL, Xu JF, Cao SG, Li Y, Zhou YB. Pancreatic stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor /c-Met/survivin regulated by P53/P21. Exp Cell Res. 2017 Aug 1; 357(1):79–87.
Tao X, Chen Q, Li N, Xiang H, Pan Y, Qu Y, Shang D, Go VLW, Xue J, Sun Y, Zhang Z, Guo J, Xiao GG. Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomed Pharmacother. 2020 May; 125:109999.
Leal AS, Misek SA, Lisabeth EM, Neubig RR, Liby KT. The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in KrasG12D; Pdx1-Cre (KC) mice. Sci Rep. 2019 May 8; 9(1):7072.
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol. 2017 Jan 21; 23(3):382–405.
Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W, Lei J, Ma J, Wang X, Lv S, Han L, Li W, Guo J, Guo K, Zhang D, Wu E, Xie K. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res. 2014 Aug 15; 20(16):4326–4338.
Khan MA, Srivastava SK, Zubair H, Patel GK, Arora S, Khushman M, Carter JE, Gorman GS, Singh S, Singh AP. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. J Biol Chem. 2020 Jun 19; 295(25):8413–8424.
Cui L, Li C, Gao G, Zhuo Y, Yang L, Cui N, Zhang S. FTY720 inhibits the activation of pancreatic stellate cells by promoting apoptosis and suppressing autophagy via the AMPK/mTOR pathway. Life Sci. 2019 Jan 15; 217:243–250.
Bailey JM, Leach SD. Signaling pathways mediating epithelial- mesenchymal crosstalk in pancreatic cancer: Hedgehog, Notch and TGFβ. In: Grippo PJ, Munshi HG, editors. Pancreatic Cancer and Tumor Microenvironment. Trivandrum (India): Transworld Research Network. 2012. Chapter 7; PMID: 22876389.
Martinez B, Yang Y, Harker DMR, Farrar C, Mukundan H, Nath P, Mascareñas D. YAP/TAZ Related BioMechano Signal Transduction and Cancer Metastasis. Front Cell Dev Biol. 2019 Oct 4; 7:199.
Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology. 2020 Apr; 20(3):409–418.
Wang L, Bi R, Li L, Zhou K, Liu H. Functional characteristics of autophagy in pancreatic cancer induced by glutamate metabolism in pancreatic stellate cells. J Int Med Res. 2020 Apr; 48(4):300060519865368.
Li C, Cui L, Yang L, Wang B, Zhuo Y, Zhang L, Wang X, Zhang Q, Zhang S. Pancreatic Stellate Cells Promote Tumor Progression by Promoting an Immunosuppressive Microenvironment in Murine Models of Pancreatic Cancer. Pancreas. 2020 Jan; 49(1):120–127.
Wen Z, Liu Q, Wu J, Xu B, Wang J, Liang L, Guo Y, Peng M, Zhao Y, Liao Q. Fibroblast activation protein α-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation. Ann Transl Med. 2019 Oct; 7(20):532.
Wang HC, Lin YL, Hsu CC, Chao YJ, Hou YC, Chiu TJ, Huang PH, Tang MJ, Chen LT, Shan YS. Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics. 2019 Sep 23; 9(24):7168–7183.
Qian B, Wei L, Yang Z, He Q, Chen H, Wang A, Yang D, Li Q, Li J, Zheng S, Fu W. Hic-5 in pancreatic stellate cells affects proliferation, apoptosis, migration, invasion of pancreatic cancer cells and postoperative survival time of pancreatic cancer. Biomed Pharmacother. 2020 Jan; 121:109355.
Van Loenhout J, Flieswasser T, Freire Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A, Lion E, Dewitte H, Peeters M, Dewilde S, Lardon F, Bogaerts A, Deben C, Smits E. Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers (Basel). 2019 Oct 19; 11(10):1597.
Nam S, Khawar IA, Park JK, Chang S, Kuh HJ. Cellular context-dependent interaction between cancer and stellate cells in hetero-type multicellular spheroids of pancreatic tumor. Biochem Biophys Res Commun. 2019 Jul 12; 515(1):183–189.
Yan Z, Ohuchida K, Fei S, Zheng B, Guan W, Feng H, Kibe S, Ando Y, Koikawa K, Abe T, Iwamoto C, Shindo K, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Mizumoto K, Hashizume M, Nakamura M. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019 May 27; 38(1):221.
Chen YT, Chen FW, Chang TH, Wang TW, Hsu TP, Chi JY, Hsiao YW, Li CF, Wang JM. Hepatoma-derived growth factor supports the antiapoptosis and profibrosis of pancreatic stellate cells. Cancer Lett. 2019 Aug 10; 457:180–190.
Marzoq AJ, Mustafa SA, Heidrich L, Hoheisel JD, Alhamdani MSS. Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells. Sci Rep. 2019 Mar 28; 9(1):5303.
Zhang YF, Zhou YZ, Zhang B, Huang SF, Li PP, He XM, Cao GD, Kang MX, Dong X, Wu YL. Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. J Cancer. 2019 Jul 23; 10(18):4397–4407.
Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells. Pancreas. 2017 Jan; 46(1):19–27.
Masamune A, Yoshida N, Hamada S, Takikawa T, Nabeshima T, Shimosegawa T. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells. Biochem Biophys Res Commun. 2018 Jan 1; 495(1):71–77.
Steins A, van Mackelenbergh MG, van der Zalm AP, Klaassen R, Serrels B, Goris SG, Kocher HM, Waasdorp C, de Jong JH, Tekin C, Besselink MG, Busch OR, van de Vijver MJ, Verheij J, Dijk F, van Tienhoven G, Wilmink JW, Medema JP, van Laarhoven HW, Bijlsma MF. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020 May 6; 21(5):e48780.
Yu L, Li JJ, Liang XL, Wu H, Liang Z. PSME3 Promotes TGFB1 Secretion by Pancreatic Cancer Cells to Induce Pancreatic Stellate Cell Proliferation. J Cancer. 2019 May 16; 10(9):2128–2138.
Shao C, Tu C, Cheng X, Xu Z, Wang X, Shen J, Chai K, Chen W. Inflammatory and Senescent Phenotype of Pancreatic Stellate Cells Induced by Sqstm1 Downregulation Facilitates Pancreatic Cancer Progression. Int J Biol Sci. 2019 Apr 21; 15(5):1020–1029.
Liu SL, Cao SG, Li Y, Sun B, Chen D, Wang DS, Zhou YB. Pancreatic stellate cells facilitate pancreatic cancer cell viability and invasion. Oncol Lett. 2019 Feb; 17(2):2057–2062.
Schnittert J, Bansal R, Prakash J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer. 2019 Feb; 5(2):128–142.
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol. 2017 Jan 21; 23(3):382–405.
Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, Mac Guad R, Sim MS, Wu YS. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020 Mar; 10(3):399–413.
Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol. 2009; 44(4):249–260.
Cui LH, Li CX, Zhuo YZ, Yang L, Cui NQ, Zhang SK. Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chem Biol Interact. 2019 Feb 25; 300:18–26.
Cortes E, Sarper M, Robinson B, Lachowski D, Chronopoulos A, Thorpe SD, Lee DA, Del Río Hernández AE. GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment. EMBO Rep. 2019 Jan; 20(1):e46556.
Tozzi M, Sørensen CE, Magni L, Christensen NM, Bouazzi R, Buch CM, Stefanini M, Duranti C, Arcangeli A, Novak I. Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H+, K+-ATPases in Pancreatic Cancer and Stellate Cells. Cancers (Basel). 2020 Mar 10; 12(3):640.
Lee SC, Hong TH, Kim OH, Cho SJ, Kim KH, Song JS, Hwang KS, Jung JK, Hong HE, Seo H, Choi HJ, Ahn J, Lee TY, Rim E, Jung KY, Kim SJ. A Novel Way of Preventing Postoperative Pancreatic Fistula by Directly Injecting Profibrogenic Materials into the Pancreatic Parenchyma. Int J Mol Sci. 2020 Mar 4; 21(5):1759.
Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, Ji J, Gao M. Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. J Am Chem Soc. 2020 Mar 11; 142(10):4944–4954.
Yang Y, Kim JW, Park HS, Lee EY, Yoon KH. Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function. J Diabetes Investig. 2020 Mar; 11(2):268–280.
Zhao H, Jiang X, Duan L, Yang L, Wang W, Ren Z. Liraglutide suppresses the metastasis of PANC-1 co-cultured with pancreatic stellate cells through modulating intracellular calcium content. Endocr J. 2019 Dec 25; 66(12):1053–1062.
Amrutkar M, Aasrum M, Verbeke CS, Gladhaug IP. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer. 2019 Jun 17; 19(1):596.
Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, Fenoglio S, Luengo A, Lees JA, Vander Heiden MG, Lauffenburger DA, Hemann MT. Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. Cancer Res. 2019 Nov 15; 79(22):5723–5733.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative commons Attribution 4.0 International (CC BY 4.0), яка дозволяє іншим особам вільно поширювати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи в цьому журналі.
Автори, направляючи рукопис до редакції журналу «Morphologia», погоджуються з тим, що редакції передаються права на захист і використання рукопису (переданого до редакції матеріалу, в тому числі таких об'єктів, що охороняються авторським правом, як фотографії автора, малюнки, схеми, таблиці і т.п.), в тому числі на відтворення в пресі і в мережі Інтернет; на поширення; на переклад рукопису на будь-які мови; експорту та імпорту примірників журналу зі статтею Авторів з метою поширення, доведення до загального відома. Зазначені вище права Автори передають Редакції без обмеження терміну їх дії і на території всіх країн світу без обмеження.
Автори гарантують, що вони мають виняткові права на використання матеріалів, переданих до редакції. Редактори не несуть відповідальності перед третіми особами за порушення гарантії, надані авторами. Розглянуті права передаються до редакції з моменту підписання поточної публікації для публікації. Відтворення матеріалів, опублікованих в журналі іншими особами та юридичними особами, можливе лише за згодою редакції, з обов'язковим зазначенням повної бібліографічного посилання первинної публікації. Автори залишають за собою право використовувати опублікований матеріал, його фрагменти і частини для навчальних матеріалів, усні презентації, підготовку дисертації дисертації з обов'язковою бібліографічною посиланням на оригінальну роботу. Електронна копія опублікованій статті, що завантажується з офіційного веб-сайту журналу в форматі .pdf, може бути розміщена авторами на офіційному веб-сайті їх установ, будь-яких інших офіційних ресурсах з відкритим доступом.