Міфи і реальність про вплив глутамату. Компіляція наукових даних сучасної світової літератури

Автор(и)

  • Є.В. Пальтов Львівський національний медичний університет імені Данила Галицького, Львів, Україна, Ukraine https://orcid.org/0000-0002-2622-4753
  • Х.П. Івасівка Львівський національний медичний університет імені Данила Галицького, Львів, Україна, Ukraine https://orcid.org/0000-0003-4372-225X
  • М.В. Паньків Львівський національний медичний університет імені Данила Галицького, Львів, Україна, Ukraine https://orcid.org/0000-0002-2622-4753

DOI:

https://doi.org/10.26641/1997-9665.2021.1.7-21

Ключові слова:

глутамат, моделі, токсичний вплив, глутамат-індуковане ожиріння

Анотація

Мета дослідження – порівняльний аналіз існуючих експериментальних моделей глутаматового впливу на організм, з’ясування механізмів цього впливу та його можливих наслідків. Для досягнення поставленої мети нами було опрацьовано джерела наукової медичної, вітчизняної та світової літератури. Результати. В здоровому організмі глутамінова кислота виділяється нейронами мозку в необхідній кількості як нейромедіатор та приймає участь в основних інформаційних потоках людини. Глутамат натрію, що потрапляє в організм з їжею у великих кількостях впливає на організм, викликаючи загальну токсичну дію та чинить місцевий вплив на шлунок, кишку, слинні та підшлункову залози тощо. Виходячи з даних світової та вітчизняної наукової літератури, експериментальні моделі, у яких вивчається вплив глутамату поділяються на два види: моделі при яких глутамат потрапляє в організм пероральним шляхом та при введенні глутамату підшкірно та внутрішньоочеревинно у неонатальний період життя. При першому шляху введення глутамат спричиняє токсичний вплив, що проявляється у підвищенні каталітичної активності в сироватці крові аланінамінотрансферази, аспартатамінотрансферази та гама-глутамілтранспептидази у 2,5; 1,6; й 1,5 рази відповідно, тоді як активність лужної фосфатази залишалася на рівні контрольних значень, що свідчить про виражений гепатотоксичний ефект глутамату натрію як харчової добавки. Спричиняє підвищення вмісту в сироватці крові загальних і тирозиновмісних пептидів, речовин низької та середньої молекулярної маси, а також зростання значень коефіцієнта інтоксикації, що опосередковано вказує на порушення процесів детоксикації ендогенних метаболітів у печінці експериментальних тварин. Доведено, що приймання всередину глутамату натрію в межах рекомендованих доз не викликає виражених патологічних змін у слизовій, м’язовій та серозній оболонках стінки шлунка, але, при цьому спостерігається незначне повнокрів’я судин підслизової оболонки. З’ясовано, що у високих дозах глутамат натрію чинить місцеву патогенну дію на тканини шлунка, що полягає у стоншенні всіх шарів його стінки, десквамації слизової оболонки та її дезорганізації у вигляді зменшення розміру шлункових залоз, збільшення кількості судин та їх повнокров’я. Одним із механізмів патогенного впливу глутамату натрію є контактна місцева та вільнорадикальна окиснювальна дія на тканини шлунка. При пероральному шляху введення глутамату відсутні явища приросту жирової клітковини (ожиріння) як підшкірного, що характерно при абдомінальній формі ожиріння так і параректального, паралієнального, параренального та ретроперитонеального типів, що є характерним для вісцеральної форми ожиріння. При підшкірному та внутрішньоочеревинному шляхах введення глутамату в неонатальний період життя у піддослідних тварин глутамат викликає гіперсекрецію соляної кислоти, розвиток уражень, що проявляються крововиливами, ерозіями та виразками в слизовій оболонці шлунка та ожиріння. Тривале введення глутамату натрію значно посилює уражуючий вплив стресу на слизову оболонку шлунка. Морфологічні дослідження піднижньощелепних слинних залоз щурів за умов глутамат-індукованого ожиріння підтверджують розвиток патологічних змін, про що свідчать виявлена вакуольна дистрофія в ацинарному відділі, периваскулярний і перидуктальний набряк. За умов абдомінального ожиріння дистрофічні процеси виявлені в ацинусах та незначні дистрофічні зміни у внутрішньочасткових вставних протоках. Висновок. При підшкірному та внутрішньоочеревинному шляхах введення глутамату в неонатальний період життя у піддослідних тварин глутамат викликає гіперсекрецію соляної кислоти, розвиток уражень, що проявляються крововиливами, ерозіями та виразками в слизовій оболонці шлунка та ожиріння. Тривале введення глутамату натрію значно посилює уражуючий вплив стресу на слизову оболонку шлунка. Морфологічні дослідження піднижньощелепних слинних залоз щурів за умов глутамат-індукованого ожиріння підтверджують розвиток патологічних змін, про що свідчать виявлена вакуольна дистрофія в ацинарному відділі, периваскулярний і перидуктальний набряк. За умов абдомінального ожиріння дистрофічні процеси виявлені в ацинусах та незначні дистрофічні зміни у внутрішньочасткових вставних відділах. Не викликає жодних сумнівів той факт, який базується на результатах численних експериментальних досліджень і висвітлюється у фахових наукових вітчизняних та зарубіжних джерелах, що абдомінальна форма глутамат-індукованого ожиріння можлива тільки при підшкірному та внутрішньоочеревенному шляхах введення у неонатальному періоді життя тварини а при пероральному шляху введення вона не виникає.

Посилання

Honcharenko MV, Tiuryna DA, Alshevskaia MN, Shenderiuk VY. [Effect of monosodium glutamate on the development of microflora and biochemical properties of salted herring]. Vestn. ASTU. Fish Industry Series. 2011; 2: 143–147. Russian.

Ysupov VP. [Food additives and spices]. History, composition and application SPb. GIORD. 2000: 176. Russian.

Rutska AV, Hetsko NV, Krynytska IYa. [Toxic effects of monosodium glutamate on living organisms (literature review)]. Medical and clinical chemistry. 2017; 19(1): 119-127. Ukrainian.

Honskyi YaI, Maksymchuk TP, Kalynskyi MI. [Human biochemistry: a textbook]. Ternopil: Ukrmedknyha. 2002: 744. Ukrainian.

Falaleeva TM, Samonyna HE, Berehovaia TV, et.all. [Effect of glyprolines on the structural and functional state of the gastric mucosa and body weight of rats under conditions of long-term administration of sodium glutamate]. Physics of the living. 2010; 18( 1): 154–159. Russian.

Bybyk EYu, Yarovaia EA. [Analysis of the spectrum of food additives in food]. Ukr. honey. alm. 2011;14(2): 20–22. Ukrainian.

Beltiukova SV, Malynka EV. [Determination of sodium glutamate by thin layer chromatography with luminescence detection]. Visn. ONU. Chemistry. 2016; 21(1(57)):50-58. Russian.

Pastukhov A, Borisova T. Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia. Brain Research. 2018;1699: 69–78. DOI: 10.1016/j.brainres.2018.06.032

Pastukhov A, Borisova T. Combined Application of Glutamate Transporter Inhibitors and Hypothermia Discriminates Principal Constituent Processes Involved in Glutamate Homo- and Heteroexchange in Brain Nerve Terminals. Therapeutic hypothermia and temperature management. 2018; 8:143–149. DOI: 10.1089/ther.2017.0047

Borisova T, Kucherenko D, Soldatkin O, Kucherenko I, Pastukhov A, Nazarova A, Galkin M, Borysov A, Krisanova N, Soldatkin A, El’skaya A. An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Analytica Chimica Acta. 2018; 1022: 113–123. DOI: 10.1016/j.aca.2018.03.015

Horák D, Beneš M, Procházková Z, Trchová M, Borysov A, Pastukhov A, Paliienko K, Borisova T. Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids Surfaces B Biointerfaces. 2017;149:64–71. DOI:10.1016/j.colsurfb.2016.10.007

Pastukhov АО, Krysanova NV, Borisova TО. [Study of glutamate transport in the nerve endings of the cerebral hemispheres of rats under conditions of moderate and deep hypothermia]. Animal biology. 2017; 19(4):50–58. DOI:10.15407/animbiol19.04.050 Ukrainian.

Pastukhov A, Krisanova N, Maksymenko V, Borisova T. Personalized approach in brain protection by hypothermia: individual changes in nonpathological and ischemia-related glutamate transport in brain nerve terminals. EPMA J. 2016; 7(1):1–26. DOI: 10.1186/s13167-016-0075-1

Borisova T, Borysov A, Pastukhov A, Krisanova N. Dynamic Gradient of Glutamate Across the Membrane: Glutamate/Aspartate-Induced Changes in the Ambient Level of L-[ 14C]glutamate and D-[ 3H]aspartate in Rat Brain Nerve Terminals. Cell Mol. Neurobiol. 2016;36:1229–1240. DOI: 10.1007/s10571-015-0321-4

Willard S, Koochekpour S. Glutamate, Glutamate Receptors, and Downstream Signaling Pathways. Int J Biol Sci. 2013;9(9): 948—959.

Kritis A, Stamoula E, Paniskaki K, Vavilis T. Researching glutamate — induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015; 9:88- 91.

Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984; 42: 1–11.

Krebs HA. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 1935; 29: 1951–69.

Berl S, Lajtha A, Waelsch H. AMINO ACID AND PROTEIN METABOLISM-VI CEREBRAL COMPARTMENTS OF GLUTAMIC ACID METABOLISM. J Neurochem 1961; 7: 186–197.

Schousboe A. Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 1981; 22: 1–45.

Ronne-Engström E, Carlson H, Liu Y. Influence of perfusate glucose concentration on dialysate lactate, pyruvate, aspartate, and glutamate levels under basal and hypoxic conditions: a microdialysis study in rat brain. J Neurochem 1995; 65: 257–62.

Benveniste H, Drejer J, Schousboe A. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984; 43: 1369–74.

Danbolt NC. Glutamate uptake. Prog Neurobiol 2001; 65: 1–105.

Manent J-B. A Noncanonical Release of GABA and Glutamate Modulates Neuronal Migration. J Neurosci 2005; 25: 4755–4765.

Park H, Han K-S, Seo J. Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol Brain 2015; 8: 7.

Noh J, Seal RP, Garver JA. Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nat Neurosci 2010; 13: 232–8.

Brosnan JT, Brosnan ME. Glutamate: a truly functional amino acid. Amino Acids 2013; 45: 413–418.

Burrin DG, Stoll B. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr 2009; 90: 850S–856S.

Kasatkina LA, Borisova TA. Glutamate release from platelets: Exocytosis versus glutamate transporter reversal. Int J Biochem Cell Biol 2013; 45: 2585–2595.

Traynelis SF, Wollmuth LP, McBain CJ. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol Rev 2010; 62: 405–496.

Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50: 295– 322.

Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006; 326: 483–504.

Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008; 9: 423–436. 143

Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 1999; 29: 83–120.

Wierońska JM, Pilc A. Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 2009; 55: 85– 97.

Gonda X. Basic pharmacology of NMDA receptors. Curr Pharm Des 2012; 18: 1558–67.

Rogawski MA. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 2013; 9–18.

Lerma J, Marques JM. Kainate Receptors in Health and Disease. Neuron 2013; 80: 292–311.

Suryavanshi PS, Gupta SC, Yadav R. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus. Mol Pharmacol 2016; 90: 96–105.

Bergles DE, Roberts JD, Somogyi P. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 2000; 405: 187– 91.

Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 1999; 26: 1–11.

Petralia RS, Rubio ME, Wenthold RJ. Cellular and Subcellular Distribution of Glutamate Receptors. Springer, Berlin, Heidelberg, pp. 143–171.

Dingledine R, Borges K, Bowie D. The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–61.

Ayalon G, Segev E, Elgavish S. Two Regions in the N-terminal Domain of Ionotropic Glutamate Receptor 3 Form the Subunit Oligomerization Interfaces That Control Subtype-specific Receptor Assembly. J Biol Chem 2005; 280: 15053–15060.

Ayalon G, Stern-Bach Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 144 2001; 31: 103–13.

Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 2000; 28: 165–81.

Sager C, Terhag J, Kott S. C-terminal Domains of Transmembrane αAmino-3-hydroxy-5-methyl-4-isoxazole Propionate (AMPA) Receptor Regulatory Proteins Not Only Facilitate Trafficking but Are Major Modulators of AMPA Receptor Function. J Biol Chem 2009; 284: 32413– 32424.

Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol 2002; 539: 725–33.

Paternain A V, Cohen A, Stern-Bach Y. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J Neurosci 2003; 23: 8641–8.

Plested AJR, Mayer ML. Structure and Mechanism of Kainate Receptor Modulation by Anions. Neuron 2007; 53: 829–841.

Krzyżanowska W, Pomierny B, Filip MM. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35: 444–462

Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1994; 4: 389–99.

Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996; 381: 71–75.

Hsia AY, Malenka RC, Nicoll RA. Development of Excitatory Circuitry in the Hippocampus. J Neurophysiol 1998; 79: 2013–2024.

Petralia RS, Esteban JA, Wang YX.. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999; 2: 31–36.

Bergles DE, Tzingounis A V, Jahr CE. Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 2002; 22: 10153–62.

Vorobev VV.[ Harmful effects of food additives on seafood safety and public health]. Fishery. 2008;5: 8–11. Russian.

Freeman M. Reconsidering the effects of monosodium glutamate: a literature review. Journal of American Academician Nurse Practice. 2006;18(10): 482–486.

Too much MSG could cause blindness. A High Dietary Intake of Sodium Glutamate as Flavoring (Ajinomoto) Causes Gross Changes in Retinal Morphology and Function, 2002 doi:10.1006/exer.2002.2017

Husarova V, Ostatnikova D. Monosodium glutamate toxic effects and their implications for human intake: a review. Journal of Medical Internet Research. 2013: 1–12.

Walker R, Lupien JR. The Safety Evaluation of Monosodium Glutamate. Journal of Nutrition. 2000: 1049–1052.

Zhao KL, Daviglus ML. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity. 2008; 16(8): 1875–1880.

Ohguro H. Too much MSG could cause blindness. Journal of Experimental Eye Research. 2001; 75: 307–315.

Beyreuther K, Biesalski HK, Fernstrom JD. Consensus meeting: monosodium glutamate–an update. Journal of Clinical Nutritional. 2007;61: 304–313.

Dubovaia HA, Dubovaia YuN, Tatarenko DP. [Effect of monosodium glutamate on living organisms]. Visn. Taras Shevchenko Lviv National University. 2013;19 ((278)1):149–154. Russian.

Yan Zhou, Ming Yang, Bi Rong. DongMonosodium glutamate avoidance for chronic asthma in adults and children. Cochrane Database Syst Rev. 2012 Jun 13;(6):CD004357. doi: 10.1002/14651858.CD004357.pub4.

Bevzo VV. [ Catalytic activity of enzymes-markers of the functional state of the liver of rats under the condition of long-term administration of monosodium glutamate.]. Clinical and experimental pathology. 2016;15( 4):15-18. Ukrainian.

Bevzo VV. [The effect of long-term administration of monosodium glutamate on some parameters of carbohydrate metabolism.] International scientific journal. 2016; 6(3): 18-20. Russian.

Bevzo VV. [Study of the toxodynamics of sodium glutamate on the body of rats under conditions of long-term administration]. Clinical and experimental pathology. 2016;15( 5 (2)):13-16. Ukrainian.

Bila KO. [Molecular mechanisms of glutamate monosodium toxicity]. Special project: analysis of scientific research: materials of VII International. scientific-practical conf. Dnipropetrovsk. 2012:3-9. Ukrainian.

Borodenko AO, Potapova AO, Naumko RF. [The effect of monosodium glutamate on the stomach wall of rats under the corrective effects of tocopherol and almagel]. Current issues of theoretical medicine. Sumy. SSU. 2011;1: 54. Ukrainian.

Ostapchenko LI, Falalieieva TM, Tsyriuk OI, Berehova TV, Sukhodolia AI. [Influence of food additives with different mechanism of action on the structural and functional state of the stomach]. K . VPTs. Kyiv University. 2008:160. U krainian.

Falalieieva TM, Dziubenko NV, Sukhodolia AI, Berehova TV. [Study of the role of NMDA-type glutamate receptors in the regulation of basal and insulin-stimulated gastric secretion in rats]. Bulletin of Taras Shevchenko National University of Kyiv. Problems of regulation of physiological functions. 2004; 9: 10-11. Ukrainian.

Falalieieva TM, Berehova TV, Shtanova LYa. [Glutamate receptors and their role in the regulation of gastric acid secretion (literature review)]. Experimental and clinical physiology and biochemistry. 2007; 2(37): 53-59. Ukrainian.

Falalieieva TM, Shtanova LYa, Berehova TV. [Effect of AMPA / kainate glutamate receptor blockade on carbacholine-stimulated gastric acid secretion in rats]. Bulletin of problems of biology of medicine. 2007;2: 22-25. Ukrainian.

Falalieieva TM, Berehova TV. Role of peripheral glutamate receptors in regulation of gastric secretion and motor function of stomach. Journal of Pre-Clinical and Clinical Research. 2007;1(2):107-111.

Falalyeyeva Т, Shtanova L, Dryvecka T, Beregova T. The role of ionotropic glutamate receptors ampa/kainate type in the mechanism of formation of basal gastric acid secretion in rats. Annales universitatis Mariae Curie-Sklodowska. Lublin-Polonia. Sectio DDD. 2007; 20((1)7): 46-49.

Falalyeyeva T, Beregova T, Shtanova L, Dryvetska T. About the different role of the central and peripheral AMPA/kainite glutamate receptors in regulation of basal gastric acid secretion in rats. International proceedings еditor Vladimir Strbak. Bratislava. Slovak republic. Medimond. 2007: 21-24.

Falalyeyeva Т, Beregova Т, Kukharsky V. The contrast effect of blocker of AMPA/KA glutamate receptors IEM 1751 on stimulated gastric acid secretion by pentagastrin and histamine in rats. Annales universitatis Mariae Curie-Sklodowska. Lublin-Polonia. Sectio DDD. 2009; 22(3): 57-60.

Falalyeyeva TM, Samonina GE, Beregovaya TV, Andreeva LA, Dvorshchenko EV. Effect of Glyprolines on Homeostasis of Gastric Mucosa in Rats with Stress Ulcers. Bulletin of Experimental Biology and Medicine. 2010;149(1): 26-28.

Falalyeyeva TM, Samonina GE, Beregovaya TV, Andreeva LA, Dvorshchenko EV. Effect of Glyprolines PGP, GP, and PG on Homeostasis of Gastric Mucosa in Rats with Experimental Ethanol-Induced Gastric Ulcers. Bulletin of Experimental Biology and Medicine. 2010;149(6): 699-701.

Falalyeyeva TM. [Effect of blockade of glutamate AMPA / kainate receptors on acid gastric secretion in rats stimulated by histamine and pentagastrin.] Bulletin of Taras Shevchenko National University of Kyiv. Problems of regulation of physiological functions. 2010:6-8. Ukrainian.

Falalyeyeva TM, Beregovaya TV. [Analysis of the participation of central and peripheral ionotropic glutamate receptors of AMPA and kainate subtypes in the implementation of basal gastric acid secretion in rats]. Bulletin of Taras Shevchenko National University of Kyiv. Problems of regulation of physiological functions. 2010;13: 10-12. Ukrainian.

Falaleeva TM, Samonyna HE, Berehovaia TV, Kucherenko MY, Andreeva LA. [Effect of proline-containing peptides Pro-Gly-Pro and its metabolites Gly-Pro and Pro-Gly on gastric acid secretion in rats]. The world of biology and medicine. 2010;2:189-193. Russian.

Falalyeyeva TM, Beregovaya TV. [The role of central and peripheral ionotropic glutamate receptors of AMPA and kainate type in the regulation of gastric acid secretion in rats]. Reports of the National Academy of Sciences of Ukraine. 2010;7: 155-157. Ukrainian.

Falalieieva TM, Kukharskyi VM, Berehova TV. [The effect of long-term administration of monosodium glutamate on the structural and functional state of the stomach and body weight of rats]. Physiological Journal. 2010;56(4): 102-110. Ukrainian.

Dziubenko NV, Falalieieva TM, Berehova TV. [The role of the glycine site of NMDA-type glutamate receptors in the regulation of gastric acid secretion]. Problems of ecological and medical genetics and clinical immunology. 2010;1 (97): 19-25. Ukrainian.

Dziubenko NV, Falalieieva TM, Berehova TV. [The role of polyamine and phenylcyclidine sites of NMDA glutamate receptors in the regulation of gastric acid secretion]. Experimental and clinical physiology and biochemistry. 2010;3: 7-12. Ukrainian.

Falaleeva TM, Samonyna HE, Berehovaia TV, Dziubenko NV, Andreeva LA. [Influence of glyprolines on the structural and functional state of the gastric mucosa and body weight of rats under conditions of long-term administration of monosodium glutamate. ]. Physics of the living. 2010;18(1):154-159. Russian.

Falalieieva TM, Berehova TV, Savchenko YuO. [Effect of monosodium glutamate on basal gastric acid secretion in rats] Problems of ecological and medical genetics and clinical immunology. 2010; 4 (100): 334-342. Ukrainian.

Falalyeyeva Т. The influence of long-term treatment with monosodium glutamate on gastric mucosa in rats. Annales universitatis Mariae Curie-Sklodowska. Lublin-Polonia. Sectio DDD. 2010; 23(4): 233- 236.

Falalieieva TM, Berehova TV, Samonina HE, Yashchenko AM. [Features of the composition of the carbohydrate component of glycoprotein receptors of the gastric mucosa under the conditions of prophylactic administration of glyprolines in rats under conditions of ethanol-induced gastric lesions] Bulletin of problems of biology of medicine. 2011; 1: 184-190. Ukrainian.

Falalieieva TM. [Effect of 10-, 20-, and 30-day administration of monosodium glutamate on gastric acid secretion in rats]. Visnyk of Taras Shevchenko National University of Kyiv. Problems of regulation of physiological functions. 2011;14: 6-9. Ukrainian.

Falalieieva TM, Berehova TV, Samonina HE, Yashchenko AM. [Peculiarities of the composition of the carbohydrate component of glycoprotein receptors of the gastric mucosa under the conditions of prophylactic administration of glyprolines in rats under the conditions of stress-induced lesions] World of Biology and Medicine. 2011; 2: 17-25. Ukrainian.

Falalieieva TM, Berehova TV, Dziubenko NV, Samonina HE. [Influence of glyprolines on the morphology of the gastric mucosa under conditions of long-term administration of monosodium glutamate]. Problems of ecological and medical genetics and clinical immunology. 2011;6 (125): 34-39. Ukrainian.

Berehova TV, Moskalenko HV, Falalieieva TM. [Study of the involvement of NMDA-type glutamate receptors in the mechanism of gastric secretion caused by hypoglycemia]. Information and negentropic therapy. 2002; 1: 34. Ukrainian.

Lorden JF, Caudle A. Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse. Journal of Neurobehavioral Toxicology Teratology. 1986; 8(5): 509–519.

Konopelniuk VV, Prybytko IYu, Tsyriuk OI, Falalieieva TM. [Pathophysiological characteristics of an experimental model of obesity in female rats caused by neonatal administration of monosodium glutamate] ScienceRise. Biological science. 2016;3: 14-18. Ukrainian.

Savcheniuk OA, Virchenko OV, Falalyeyeva TM, Beregova TV, Babenko LP, Lazarenko LM. et.al. The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention. EPMA Journal. 2014; 5 (1):2-5. doi: 10.1186/1878- 5085-5-2.

Savcheniuk OA, Virchenko OV, Falalieieva TM, Berehova TV, Babenko LP, Lazarenko LM, Spivak MYa. [Development of experimental obesity in rats caused by the action of monosodium glutamate, on the background of the introduction of probiotics]. Physiological Journal. 2014;60( 2):63-69. Ukrainian.

Oida K, Nakai T, Hayashi T, Miyabo S, Takeda R. Plasma lipoproteins of monosodium glutamate-induced obese rats. Int J Obes. 1984;8(5):385-91.

Leshchenko I, Skochko N, Virchenko O, Hadiliia O, Falalieieva T. [The effect of mono-, poly- and combined probiotics on the development of obesity caused by sodium glutamate]. Bulletin of Taras Shevchenko National University of Kyiv. Problems of regulation of physiological functions. 2015; 2: 65-67. Ukrainian.

Leshchenko IV, Shevchuk VH, Savcheniuk OA. et.all. [Exocrine function of the pancreas in rats under experimental obesity]. Physiological Journal. 2014;60(1):41-48.Ukrainian.

Hordiienko LP, Kondro MM. [The influence of metabolic syndrome on the development of oxidative stress in the tissues of the salivary glands of rats]. Current issues of modern medicine: Bulletin of UMSA 2012;12 (4 (40)): 124-126. Ukrainian.

Hordiienko LP. [Proteinase-inhibitory potential, activity of ornithine decarboxylase and α-amylase in tissues of salivary glands of rats under conditions of alimentary obesity]. Actual problems of modern medicine: Bulletin of UMSA. 2013;13(2 (42)): 192- 194. Ukrainian.

Hordiienko LP. [Oxidative stress is the leading mechanism for the development of pathological changes in the salivary glands under conditions of experimental obesity]. Actual problems of modern medicine: Bulletin of UMSA. 2014; 14 (4 (48)): 183-186. Ukrainian.

Hordiienko LP, Neporada KS. [Metabolic changes in the tissues of the salivary glands of rats under a high-calorie diet]. Current issues of modern medicine: Bulletin of the UMSA 2015; 15(1(49)): 163-167. Ukrainian.

Hordiienko LP, Yeroshenko HА, Neporada KS. [Morphological changes in the salivary glands of rats under conditions of diet-induced obesity] World of Medicine and Biology. 2015; 4(53): 108-110. Ukrainian.

Gordienko LP, Kondro MM, Neporada KS. Effect of diet –induced obesity on the NO-ergic system in tissues of rat’s salivary glands. Abstracts of the 7th Lviv-Lublin conference of Experimental and Clinical Biochemistry. Lviv. Ukraine. 2013:48-50.

Gordienko LP, Kondro MM, Neporada KS. [Proteinase-inhibitory potential in rat salivary gland tissues under conditions of alimentary obesity. Proceedings of the international interdisciplinary scientific-practical conference. Biologically active substances and materials: fundamental and applied issues of obtaining and using]. New world. Ukraine. 2013; 2:133-134. Ukrainian.

Gordienko LP.[ The state of the antioxidant system in the salivary glands of rats in alimentary obesity] Abstracts of the XVII All-Russian Medical and Biological Conference of Young Researchers, with international participation: Basic science and clinical medicine - man and his health. 2014:116- 117. Russian.

Gordienko LP, Neporada KS. [Free radical processes in the salivary glands of rats under a high-calorie diet]. XIII readings by V.V. Podvysotsky: Bulletin of the scientific conference materials. Odessa. 2014:85-86. Ukrainian.

Gordienko LP, Neporada KS.[ The state of the antioxidant system in the salivary glands of rats under a high-calorie diet]. Proceedings of the VI Plenum of the Scientific Society of Pathophysiologists of Ukraine and a scientific-practical conference with the participation of international specialists. Topical issues of experimental and clinical pathophysiology. Vinnytsia. 2014: 14-15. Ukrainian.

Falalieieva TM. [Changes in body weight of rats with long-term administration of monosodium glutamate]. The world of medicine and biology. 2012; 2:170–172. Ukrainian.

Luz J, Pasin VP, Silva DJ. Effect of food restriction on energy expenditure of monosodium glutamate-induced obese rats. Journal of Nutritional Metabolism. 2010; 56( 1): 31–35.

Dawson R, Pelleymounter MA. Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. Journal of Physiology. 1997; 273: 202–206.

Samuels A. Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults – comments by Samuels. Journal of Nutritional. 2010; 9:. 11–13.

Tarasoff L, Kelly MF. Monosodium L-glutamate: A doubleblind study and review. Journal of Food and Chemical Toxicology. 1993; 31: 1019–1035

Geha R, Beiser A, Ren C. Review of alleged reactions to monosodium glutamate and outcome of a multicenter doubleblind placebo-controlled study. Journal of Nutritional. 2000;130: 1058– 1062.

Yang WH, Drouin MA, Herbert M. The monosodium glutamate symptom complex: assessment in a double-blind, placebo-controlled, randomized study. Journal of Allergy Clinical Immunology. 1997; 99: 757–762.

Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Journal of Human Experimental Toxicology. 2006; 25 (5): 251–259.

Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology. 1954; 47: 419– 427

Pizzi WJ, Barnhart JE, Fanslow DJ. Monosodium glutamate administration to the newborn reduces reproductive ability in female and male mice. Journal of Science. 1977; 196: 452–454.

##submission.downloads##

Опубліковано

2021-12-28

Номер

Розділ

Статті