Методичні підходи до викладання вікових особливостей «Власне сполучних тканин» в лекційному курсі та на практичних заняттях з гістології

Автор(и)

  • I. S. Khripkov Державний заклад «Дніпропетровська медична академія МОЗ України», Дніпро, Ukraine https://orcid.org/0000-0003-0378-8414
  • A. G. Dudlya Державний заклад «Дніпропетровська медична академія МОЗ України», ДніпроМетодичні підходи до викладання вікових особливостей «Власне сполучних тканин» в лекційному курсі та на практичних заняттях з гістології., Ukraine

DOI:

https://doi.org/10.26641/1997-9665.2020.2.51-57

Ключові слова:

гістологія, власне сполучні тканини, фібробласти, міжклітинний матрикс, вікові зміни

Анотація

Розуміння клітинних і тканинних механізмів, які лежать в основі вікових змін сполучних тканин дозволяє сформувати у студентів перших курсів уявлення про реалізацію трофічної, опорно-механічної, захисної, адаптивної функцій в різні вікові періоди і сформувати цілісний підхід до оцінки інтеграційних функції сполучних тканин в різні вікові періоди. У роботі представлена цітотопографічна класифікація власне сполучних тканин, надана характеристика цітогенеза і цитофізіології клітин фібробластичного диферона в віковому аспекті, представлені морфо - функціональні зміни сполучних тканин в пренатальному і постнатальному періодах індивідуального розвитку організму. Особливу увагу приділено морфогенетичним змінам клітин фібробластичного диферона і міжклітинного матриксу волокнистих сполучних тканин при старінні. Вікові зміни власне сполучних тканин визначаються зменшенням чисельності і зміною співвідношення між клетинами фібробластичного диферона, зниженням їх проліферативної і синтетичної активності, що супроводжується змінами кількісного і якісного складу міжклітинного матриксу та його інтегративно - буферних властивостей.

Посилання

Akmayev GA, Akmayev IG, Afanasyev YI, Babmindra VP, Bazhenov DV, Bobova LP, Borovaya TG, Brykova TS, Bykov VL, Valkovich EI, Verin VK, Volkova OV, Ganeshina OT, Gemonov VV, Goryachkina VL, Grafova VYa, Grigoryan BA, Danilov RK, Dedukh NV, Dmitriyeva NA, Zueva LV, Zufarov KA, Ivanova VF, Kabak KS, Katinas GS, Kozhukhar VG, Kovalenko RI, Kvetnoy IM, Korzhevsky DE, Kostyukevich SV, Kuznetsov SL, Lutsenko MT, Lychakov DV, Majorov VN, Motavkin PA, Novozhilova AP, Pavlov GG, Pavlova VN, Pankov EYa, Polenov AL, Puzyrev AA, Pyatkina GA, Rossolko GN, Sosunov AA, Sotnikov OS, Hilova YuK, Khmelnytskaya NM, Chelyshev YuA, Shvalev VN, Yuzhakov VV, Yuldashev AY, authors: Guide to histology. In 2 t. T.I. St. Petersburg: Spetslit; 2001. 735 p. Russian.

Omelyanenko N.P., Slutsky L.I. Connective tissue (gistofiziology and biochemistry). M.: Izvestia, 2009. 324 p. Russian.

Bozo IYa, Deyev RV, Pinayev GP ["Fibroblast" – a specialized cell or a functional condition of cells of mezenkhimny origin?]. Cytology. 2010;52(2):99–109. Russian.

Covas D., Panepuccia R., Fontes A. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 2008;36:642–54.

Doherty M., Ashton B., Walsh S. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 1998;13:828–38.

Doherty M.J., Canfield A.E. Gene expression during vascular pericyte differentiation. Crit. Rev. Eukaryot. Gene Expr. 1999;9:1–17.

Diaz-Flores L., Gutierrez R., Varela H. Microvascular pericytes: a review of their morphological and functional characteristics. Histology Histopathology. 1991;6:269‑86.

Farrington-Rock C., Crofts N., Doherty M. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004;110:2226–32.

Danilov R.K. [General principles of cell organization, development and classification of tissues. Histology Guide.] T.1. – Sankt-Peterburg: SpetsLit, 2001. – 328s. Russian.

Sorrell M., Caplan A.I. Fibroblasts – a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 2009;276:161–214.

Sorrell J.M., Caplan A.I. Fibroblast heterogeneity: more than skin deep. J Cell Sci. 2004;117:667–675.

Bayreyter K, Franz P, Rodeman H. [Fibroblasts at a normal and pathological terminal differentiation, aging, apoptosis and transformation]. Ontogenesis. 1995;236(1):22–37. Russian.

Kahari V.M., Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Drmatol. 1997;6:199–213.

Shekhter AB, Berchenko GN. [Fibroblasts and development of connecting fabric: ultrastructural aspects of biosynthesis, fibrillogenesis and catabolism of collagen]. Archive of pathology. 1978;8:70. Russian.

Parsonage G. A stromal address code defined by fibroblasts. Trends Immunol. 2005;26:150–56.

Tomasek J., Gabbiani G., Hinz B. Myofibroblasts and mechanoregulation of connective tissue remodelling. Mol. Cell Biol. 2002;3:349–63.

Sorrell J.M., Baber M., Caplan A. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J. Cell.Physiol. 2004;200:134–45.

Kalluri R., Zeisberg M. Fibroblasts in cancer. Nature Publishing Group. 2006;6:392–401.

Wiseman B., Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296:1046–9.

Nolte S.V., Xu W., Rennekampff H-O., Rodemann P. Diversity of Fibroblasts – A Review on Implications for Skin Tissue Engineering Cells Tissues Organs. 2008;187:165–76.

Chang H., Chi J-T., Dudoit S. Diversity, topographic differentiation, and positional memory in human fibroblasts. PNAS. 2002;99(20):12877–82.

Lee D., Cho K. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in threedimensional culture systems. Arch Dermatol Res. 2005;296:296–302.

Marionnet C., Pierrard C., Vioux-Chagnoleau C. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epi- dermal junction in a model of reconstructed skin. J Invest Dermatol. 2006;126:971–9.

Sorrell J.M., Baber M., Caplan A. Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell Tissue Res. 2003;327:499–510.

Haniffa M., Collin M., Buckley C. Mesenchymal stem cells: the fibroblasts new clothes? Haemotologica 2009;94(2):258–263.

Hogaboam C.M., Steinhauser M.L., Chensue S.W., Kunkel S.L. Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int 1998;54(6):2152-9.

Stephens P., Genever P. Non-epithelial oral mucosal progenitor cell populations. Oral Diseases 2007;13:1–10.

Herskind C., Bentzen S., Overgaard J. Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother. Oncol. 1998;47:263-9.

Rodemann H., Bayreuther К., Francz Р. Selective enrichment and biochemical characterisation of seven fibroblast cell types of human skin fibroblast populations in vitro. Exp. Cell Res. 1989;180:84–93.

Hakenjos L., Bamberg H., Rodemann H. TGF-b1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic response. Int. J. Radiat. Biol. 2000;76:503–9.

Dimri G., Lee X., Basile G. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS USA 1995;92:9363–7.

Soukupova M., Holeckova E. The latent period of explanted organs of newborn, adult and senile rats. Exp. Cell Res. 1964;33:361-7.

Schneider E.L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. PNAS USA 1976;73(10):3584–8.

Iudintseva N.M., Blinova M.I., Pinaev G.P. Characteristics of cytoskeleton organization of human normal postnatal, scar and embryonic skin fibroblasts spreading on different proteins of extracellular matrix. Tsitologiia 2008;50(10):861–7.

Reed M.J., Ferara N.S., Vernon R.B. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech. Ageing Dev. 2001;122(11):1203–20.

Schulze C., Wetzel F., Kueper T. Stiffening of human skin fibroblasts with age. Biophys. J. 2010;99(8):2434–42.

Smith J.R., Pereira-Smith O.M., Schneider E.L. Colony size distributions as a measure of in vivo and in vitro aging. PNAS USA 1978;75(3):1353-6.

Hayflick L. The cell biology of aging. J. Invest. Dermatol. 1979;73(1):8‑14.

Mammone T, Gan D, Foyouzi-Youssefi R. Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures. Cell Biol. Int. 2006;30(11):903–9.

Varani J., Dame M., Rittie L. Decreased collagen production in chronologically aged skin. Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation.AJP 2006;168(6):1861–8.

Greco M., Villani G., Mazzucchelli F. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003;17(12):1706–8.

Varani J., Warner R., Gharaee-Kermani M. Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Inv. Dermatol. 2000;114:480–6.

Smirnova IO. [Functional morphology of aging of skin]. Achievements of gerontology. 2004;13:44–5. Russian.

##submission.downloads##

Номер

Розділ

Статті