DOI: https://doi.org/10.26641/1997-9665.2020.3.76-84

Особливості комплексних судово-медичних експертиз механічного пошкодження нижніх кінцівок при нелетальній автотравмі

V. K. Sokol

Анотація


Актуальність. Встановлення механізму автомобільної травми вимагає проведення ряду СМЕ в зв'язку з утворенням пошкоджень різних сегментів тіла в різні фази на різних поверхнях з різним механізмом травматичної дії. Мета - вивчити причини призначення і зміст комплексних СМЕ при автотравмах з механічним пошкодженням нижніх кінцівок. Методи. Матеріал - 70 актів комплексних СМЕ, проведених за фактом нелетальної автотравми з пошкодженням нижніх кінцівок за період лютий - червень 2018 р. Методи - ретроспективний аналіз, описова статистика. Результати. Потерпілими були в основному пішоходи (97,1%) чоловічої статі (77,1%). Основні причини призначення комплексних СМЕ - встановлення причинно-наслідкового зв'язку між: а) механізмом травми, механічним пошкодженням автомобіля та наслідком травми (48,6%) і б) механізмом та наслідком травми (32,9%). На попередньому етапі було проведено 83 СМЕ; частіше за інших призначалися: огляд транспортного засобу (14,3%), автотехнічна (14,3%), комісійна (12,9%), криміналістична (61,4%) експертизи. В рамках комплексних СМЕ проводилися автотехнічна (51,4%), транспортно-трасологічна (24,3%) експертизи, огляд транспортного засобу (38,6%); всього 88 експертиз. Основні блоки питань комплексних СМЕ: механізм і послідовність утворення тілесних ушкоджень; положення пішохода в момент первинного контакту з автомобілем; характер і послідовність отримання механічних пошкоджень на автомобілі; можливість запобігання ДТП водієм. Висновок. Одним із шляхів оптимізації СМЕ автомобільної травми є стандартизація протоколів обстеження травматологічних хворих, в тому числі з детальним відображенням специфічних штамп-пошкоджень покривної системи.

Ключові слова


автомобільна травма; пішоходи; пошкодження нижніх кінцівок; судово-медична експертиза

Повний текст:

PDF (English)

Посилання


The UN Road Safety Collaboration: Global plan for the decade of action for road safety 2011-2020. Available at: http://www.who.int/roadsafety/ decade_of_action/plan/plan_english.pdf [accessed 21.06.15].

Global status report on road safety 2018. Geneva: World Health Organization; 2018. Licence: CC BY- NC-SA 3.0 IGO. 403 р.

Gokalp MA, Hekimoglu Y, Gozen A, Guner S, Asirdizer M. Evaluation of severity score in patients with lower limb and pelvic fractures injured in motor vehicle front-impact collisions Med Sci Monit, 2016;22:4692-98. doi: 10.12659/MSM.898459 PMID: 27905350

Aleassa EM, Eid HO, Abu-Zidan FM. Effects of vehicle size on pedestrian injury pattern and severity: prospective study. World J Surg. 2013;37(1):136-40. doi: 10.1007/s00268-012-1797-4 PMID: 23015221

[Law of Ukraine "On Forensic Examination" in accordance with the Resolution of the Verkhovna Rada of Ukraine of February 25, 1994 N 4038a-XII]. Ukrainian

[«Instruction on forensic medical examination" approved by the order of the Ministry of Health of Ukraine of January 17, 1995 N 6]. Ukrainian.

Department for Transport Scottish Government Welsh Assembly Government. Reported road casualties Great Britain 2012. London, Department for Transport Great Minster House, 2013.

Bouaoun L, Haddak MM, Amoros E. Road crash fatality rates in France: A comparison of road user types, taking account of travel practices. Accid Anal Prev, 2015;75:217–25. DOI: 10.1016/j.aap.2014.10.025

Ammori MB, Eid HO, Abu-Zidan FM. Lower limb and associated injuries in frontal-impact road traffic collisions. Afr Health Sci. 2016;16(1):306-10. http://dx.doi.org/10.4314/ahs.v16i1.40 PMID: 27358646

Decker S, Otte D, Cruz DL, Muller CW, Omar M, Krettek C, et al. Injury severity of pedestrians, bicyclists and motorcyclists resulting from crashes with reversing cars. Acc Anal Prev. 2016;94:46–51. https://doi.org/10.1016/j.aap.2016.05.010

Watanabe R, Katsuhara T, Miyazaki H, Kitagawa Y, Yasuki T. Research of the relationship of pedes- trian injury to collision speed, car-type, impact location and pedestrian sizes using human FE model (THUMS Version 4). Stapp Car Crash J. 2012;56:269-321. PMID: 23625564

Roudsari BS, Mock CN, Kaufman R. An evaluation of the association between vehicle type and the source and severity of pedestrian injuries. Traffic Inj Prev. 2005;6(2):185-92. doi: 10.1080/15389580590931680. PMID: 16019404.

Semenov AV, Sorokovikov VA. [The scales for estimation on injury severity and prediction of outcomes of injuries]. Polytrauma. 2016;2:80-90. Russian.

Reith G, Lefering R, Wafaisade A, Hensel KO, Paffrath T, Bouillon B, Probst C. Injury pattern, outcome and characteristics of severely injured pedestrian. Scand J Trauma Resusc Emerg Med. 2015;23:56. DOI 10.1186/s13049-015-0137-8 PMID: 26242394

Shi L, Han Y, Huang H, Li Q, Wang B, Mizuno K. Analysis of pedestrian-to-ground impact injury risk in vehicle-to-pedestrian collisions based on rotation angles. J Safety Res. 2018;64:37-47. https://doi.org/10.1016/j.jsr.2017.12.004

Fracture and Dislocation Compendium—2018. A joint collaboration between the Orthopaedic Trauma Association and the AO Foundation. J Orthop Trauma. 2018; 32(1):Suppl. DOI: 10.1097/BOT.0000000000001063

Yu W, Chen H, Lv Y, Deng Q, Kang P, Zhang L. Comparison of influencing factors on outcomes of single and multiple road traffic injuries: A regional study in Shanghai, China (2011- 2014). PLoS ONE. 2017;12(5):e0176907. https://doi.org/ 10.1371/journal.pone.0176907 PMID: 28493893

Watanabe R, Katsuhara T, Miyazaki H, Kitagawa Y, Yasuki T. Research of the relationship of pedestrian injury to collision speed, car-type, impact location and pedestrian sizes using human FE model (THUMS version 4). Stapp Car Crash J. 2012;56:269–321. DOI: 10.1371/journal.pone.0176907 PMID: 23625564

Li G, Yang J, Simms C. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios. Acc Anal Prev. 2017;100:97–110. https://doi.org/10.1016/j.aap.2017.01.006

Scattina A, Mo F, Masson C, Avalle M, Arnoux Pierre J. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model. Traf Inj Prev. 2018;19:5:535-541. DOI: 10.1080/15389588.2018.1432858 PMID: 29381438

Verzosa N, Miles R. Severity of road crashes involving pedestrians in Metro Manila, Philippines. Accid. Anal. Prev. 2016; 94:216–26. https://doi.org/10.1016/j.aap.2016.06.006

Elliott JR, Simms CK, Wood DP. Pedestrian head translation, rotation and impact velocity: The influence of vehicle speed, pedestrian speed and pedestrian gait. Accid. Anal. Prev. 2012;45:342–53. https://doi.org/10.1016/j.aap.2016.06.006

Tang J, Zhou Q, Nie B, Yasuki T, Kitagawa Y. Influence of Pre-impact Pedestrian Posture on Lower Extremity Kinematics in Vehicle Collisions. SAE Int J Transp Saf. 2016;4(2):278-88. DOI: 10.4271/2016-01-1507

Li G, Yang J, Simms C. The influence of gait stance on pedestrian lower limb injury risk. Accident; analysis and prevention. Accid. Anal. Prev. 2015;85:83–92. DOI: 10.1016/j.aap.2015.07.012

Liu W, Su S, Qiu J, Zhang Y, Yin Z. Exploration of Pedestrian Head Injuries—Collision Parameter Relationships through a Combination of Retrospective Analysis and Finite Element Method. Int J Environ Res Public Health. 2016;13:1250. doi:10.3390/ijerph13121250. PMID: 27999278

D’elia A, Newstead S. Pedestrian Injury Outcome as a Function of Vehicle Market Group in Victoria, Australia. Traffic Inj Prev. 2015;16(7):709-14. https://doi.org/10.1080/15389588.2014.1003819




Morphologia