Лазерна поліпроекційна мікроскопія в інтегруючій сфері / фотометричній кулі Ульбріхта з використанням безлинзової мікроскопів з asp-сенсорами на базі приладів із зарядним зв'язком або комплементарних метал-оксид-напівпровідникових матриць.

Автор(и)

  • O. V. Gradov Институт Химической Физики им. Н.Н. Семенова РАН, г. Москва, Російська Федерація
  • F. K. Orekhov Институт Химической Физики им. Н.Н. Семенова РАН, г. Москва, Російська Федерація

DOI:

https://doi.org/10.26641/1997-9665.2019.2.81-93

Ключові слова:

мікроскопія в інтегруючій сфері, сфера Ульбріхта, безлинзова мікроскопія, картування тканин з використанням сенсорів з кутовою чутливістю, мікроскопія на чіпі, MPLM-UIS

Анотація

Мікроскопія з інтегруючою сферою, що відома також як сфера Ульбріхта або фотометрична куля Ульбріхта, досить рідко застосовується в гістологічній або цитологічній практиці, що пов'язано з трудомісткістю виготовлення інтегруючої (з тими чи іншими отворами для введення препарату), що містить зразок-мікропрепарат камери, і дорожнечею сучасних промислово виготовлених сфер Ульбріхта, в ультраструктурному / субмікроскопіческом випадку, особливо - при використанні методів і технологій бліжнепольной оптичної мікроскопії (СБОМ) - ускладнюється також розмірами відповідного пристрою. Необхідність в узгодженні розмірів сфери з розміром предметного столика, з одного боку, і з розмірами конкретного препарату, з іншого боку, являє собою технічне і фізичне протиріччя, яке, в принципі, уникається тільки при: рівності розмірів трансмісійного вікна предметного столика і препарату; взаємно-однозначному дотриманні поля освітленості (конденсора або довільного коллімірованого джерела випромінювання) з розмірами мікропрепарату і контактно поєднаного з ним предметного столу; отриманні широкопольні картинки в стаціонарному стані столу (так як зміщення положення його всередині інтегруючої сфери призведе до зміни світлотіньової структури регістрограми), тобто взаємно-однозначної відповідності між розмірами поля зору і препарату, трансмісійного вікна столу і реєстрованого пучка в перетині, а також перетину останнього і поля зору. У генеральному випадку з поєднанням всіх перерахованих вище площин і перетинів на стаціонарній позиції в центрі сфери Ульбріхта єдиним можливим рішенням є використання не редукованого стандартного оптичного мікроскопа усіченої конструкції, але ПЗС- або КМОП- матриці з елементарної обв'язкою, яка виконує роль аналітичного чіпа з функцією безлинзового проекційного мікроскопа.

Посилання

Kiguchi M, Kato M. Near-field optical mi-croscopy using an integrating sphere. Applied Phys-ics B. 2001;73(7):727-730.

ul Rehman A, Anwer AG, Goldys EM. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy. Photodiagnosis and photodynamic therapy. 2017;20:201-206.

Mann S, Oener S, Cavali A, Haverkort JEM, Bakkers EPAM, Garnett E. Integrating sphere microscopy to quantify losses and limits in nanoscale solar cells. Abstracts of Papers of the American Chemical Society. 2017;253:111-112.

Mann SA, Sciacca B, Zhang Y, Wang J, Kontoleta E, Liu H., Garnett EC. Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures. ACS nano. 2017;11(2):1412-1418.

Gradov OV, Gradova MA. Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres. Surface En-gineering and Applied Electrochemistry. 2016;52(1):117-125.

Roth A. Vacuum Sealing Techniques. AIP Press. New York. 1994. 845 p.

Fligsten KE, Wolbarsht ML. A diffusely transmitting, integrating sphere for measuring laser output with a phototransistor. Proceedings of the IEEE. 1966;54(8):1109-1110.

Kneissl GJ, Richmond JC. A laser-source integrating sphere reflectometer, NBS Tech. Note {US National Bureau of Standards: for sale by the Supt. of Docs., US Govt. Print. Off.}. 1968; 439.

Kneissl GJ, Richmond JC, Wiebelt JA. A laser source integrating sphere for the measurement of directional, hemispherical reflectance at high temperatures. In: Thermophysics of Spacecraft and Planetary Bodies, 1967:177-202.

Wonnell LD. Integrating sphere photodetector for measurement of continuous-wave and peak laser power. Rep. “Bendix Corp.”, Kansas City, Mo.(USA). 1976;BDX-613-1419:1-22. https://www.osti.gov/servlets/purl/7179667

Qiuyun X, Xiaobing Z, Jianjun L. Devel-opment of laser illuminated integrating sphere source. Optics and Precision Engineering. 2009;17(4):738-744.

Metzger NK, Spesyvtsev R, Miller B, Maker G., Malcolm G., Mazilu M., Dholakia K. Integrating sphere based speckle generation for wavelength determination and laser stabilization. Frontiers in Optics / OSA Technical Digest. 2016: FTh4C-4. DOI: 10.1364/FIO.2016.FTh4C.4

Boreman GD, Sun Y, Centore AB. Genera-tion of laser speckle with an integrating sphere. Optical Engineering. 1990;29(4):339-343.

Leung WC, Crooks W, Rosen H, Strand T. An optical method using a laser and an integrating sphere combination for characterizing the thickness profile of magnetic media. IEEE Transactions on Magnetics. 1989;25(5):3659-3661.

Morales-Cruzado B, Pérez-Gutiérrez FG, de Lange DF, Romero-Méndez R. Study of the effect introduced by an integrating sphere on the temporal profile characterization of short laser pulses propagating through a turbid medium. Applied op-tics. 2015;54(9):2383-2390.

Venkatesh CG, Eng RS, Mantz AW. Tuna-ble diode laser–integrating sphere systems: a study of their output intensity characteristics. Applied op-tics. 1980;19(10):1704-1710.

Wang L, Sharma S., Aernouts B, Ramon H, Saeys W. Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300-2350 nm region with high sensitivity. Proc. SPIE. 2012; 8427:84273B-1– 84273B-6.

Yasuji Y. Development of a spectral re-sponse calibration system using a wavelength-tunable laser and an integrating sphere. Proceedings of the 41st SICE Annual Conference SICE 2002. 2002;4:2082-2087.

Werth A, Liakat S, Dong A, Woods CM, Gmachl CF. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectrosco-py. Applied Physics B. 2018;124(5):75.

Zakharov SD, Timofeev YP, Tugov II. Use of a light-integrating sphere in low-intensity laser therapy. Bulletin of the Lebedev Physics Institute, 2008;35(9):269.

Wei H, Xing D, Wu G, Gu H, Lu J, Shen X, Jin Y. Optical properties of native and coagulated human liver tissues at argon ion laser – an in vitro study using the double-integrating-sphere technique. Proc SPIE. 2005;5630:789-796.

Honda N, Nanjo T, Ishii K, Awazu K. Op-tical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm. Proc. SPIE. 2012;8221:82211F-1–82211F-8.

Austerlitz C, Campos D, Allison R, Sheng C, Bonnerup C, Sibata C. Short and long term stability of the Diomed 630PDT laser evaluated with inte-grating sphere, power meter, and calorimeter. Proc. SPIE. 2009;380:73804L-1–73804L-8.

Singh M, Periasamy A, Chitra T. Develop-ment of an optical fibre technique for He− Ne laser screening of human body and its comparison with the integrating sphere method. Medical and Biologi-cal Engineering and Computing. 1982:20(1):111-112.

Xu J, Wei H, Li X. Integrating-Sphere Sys-tem for Measuring Diffuse Reflection Characteris-tics of He-Ne Laser Irradiation for Rats Tissues at Different Aperture of Diaphragm in Vitro. Acta La-ser Biology Sinica. 2002;11(4):244-246.

Morales-Cruzado B, Pérez-Gutiérrez FG, de Lange DF, Romero-Méndez R. Effect of an inte-grating sphere measurement on the distortion of a laser pulse propagating through a turbid medium. Proc. SPIE. 2014;8941:89410O-1–89410O-11.

Lukins PB. A 650 nm Diode Laser-based Integrating Sphere System for Absolute Radiometry. Australian Government, National Measurement Institute report NMI-TR. 2006;NMI-TR-10:1-15. https://www.measurement.gov.au/Publications/TechnicalReports/Documents/NMI%20TR%2010.pdf.

Qi ZHS, Tougkun WCS. [Development of integrating sphere Coating for high power CO2 la-ser]. [Laser Journal]. 1985;5;004.

Agurkova TN. [Action of laser radiation on the properties of staphylococci]. Zh Mikrobiol Epidemiol Immunobiol. 1979;(5):101-103. [in Rus-sian]

Shkuratov SI, Kul'chavenia EV. [Laser therapy of tuberculous cystitis]. Probl Tuberk. 1990;(5):9-11. [in Russian]

Grubnik VV, Tkach IuG, Shipulin PP, Potapenkov MA, So Bon Ho. [Use of laser irra-diation in the treatment of lung tumors]. Klin Khir. 1992;(5):15-18. [in Russian]

Dudenko GI, Zaliubovskiĭ VI. [Treatment of acute thrombophlebitis of the lower limbs with laser irradiation]. Khirurgiia (Mosk). 1989;(9):97-99. [in Russian]

Matsiak IuA. [Device for monitoring the emitter of helium-neon laser LG-75 in proctologic practice]. Klin Khir. 1984;(5):61-62. [in Russian].

Vin'kova GA, Ionin AP, Ionina GI. [The treatment of posttraumatic uveitis with low-intensity laser radiation]. Vestn Oftalmol. 1999;115(5):20-21. [in Russian]

Olesin AI, Maksimov VA, Mazhara IuP, Golub VI, Golub IaV, Skorodumova EA. [Laser irradiation of venous blood for prevention of reper-fusion syndrome in myocardial infarction]. Patol Fiziol Eksp Ter. 1992;(5-6):20-23. [in Russian]

Kalish IuI, Sadykov RA, Dolgushkin AN. [The use of low-intensity laser irradiation in the im-mediate postoperative period in patients with gastroduodenal ulcer]. Klin Khir. 1991;(9):58-60. [in Russian]

Mel'man EP, Del'tsova EI. [Effect of heli-um-neon laser radiation on restoration of the struc-ture of the microcirculatory bed and neurocytes of the small intestine following experimental ischemia]. Arkh Anat Gistol Embriol. 1987;92(5):39-45. [in Russian]

Rakhishev AR. [Reaction of the peripheral nervous system elements to the action of laser irra-diation]. Arkh Anat Gistol Embriol. 1976;70(2):5-13. [in Russian]

Mansurov KK, Dzhuraev KK, Barakaev SB, Kharina TP, Pulatov DI. Effect of a helium-neon laser on the physicochemical properties of bile. Bull. Exp. Biol. Med. 1990;110(2):1052-1055.

Askaryan GA. Enhancement of transmis-sion of laser and other radiation by soft turbid physical and biological media. Sov. Journ. Quant. Electron. 1982;12(7):877-880.

Gamaleya NF, Skivka LM, Fedorchuk AG. Effect of helium-neon laser irradiation on antitumor activity of LAK and IL-2 in mice with Lewis lung carzinoma. Experimental Oncology. 2003;23(4):301-303.

Gordeev DV, Ostapchenko EP, Teselkin VV. The spectrum of a gas laser. Journ. Appl. Spectrosc. 1967;6(3):211-215.

Belogol'skii VA, Kubarev AV. Passive power stabilization for gas lasers. Meas. Tech. 1971;14(3):504-505.

Koltun VL, Kravets MV, Leont'ev VG, Lipskiĭ VV, Nadol'skiĭ EY, Ostapchenko EP. Inves-tigation of output-power instability in a helium–neon laser with a planospherical resonator. Sov. Journ. Quant. Electron. 1981;11(8):1066-1067.

Burnashev MN, Privalov VE, Tkachenko LP. Standardization of metrological gas-discharge lasers. Meas. Techn. 1988;31(2):121-124.

Wang X, Cheng H, Xiao L, Zheng B, Meng Y, Liu L, Wang Y. Laser cooling of rubidium 85 atoms in integrating sphere. Chinese Optics Letters. 2012. 10(8): 080201-1-080201-3. [王旭成, 成华东, 肖玲, 郑本昌, 孟艳玲, 刘亮, & 王育竹. (2012). Laser cooling of rubidium 85 atoms in integrating sphere. 中国光学快报: 英文版, 10(8), 1-3].

Davis NM, Hodgkinson J, Francis D, Tatam RP. Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser. Proc. SPIE. 2016. 9899: 98990M.

##submission.downloads##

Номер

Розділ

Статті