Пивоваренко Y.V. Натурална природа арборизації аксонів, що виникає при дії низькочастотних електромеагнітних полів.
Київська Тарас Шевченко Навігаційна та НААН Украины, Київ, Україна

Абстракт. Дана низької частоти електромагнітних полів стимулює регенерацію шкідливих нейронів. Об'єктив. Цілі роботи були в тестування гіпотези, що негативна електризація цитоплазми нейронів, як і арборизація аксонів, можуть виникати під впливом низької частоти електромагнітних полів.
Методи. Для негативної електризації розчинів хлоридів були використані різні низької частоти (0–100 Гц) ЕМП-генератори. Негативна електризація розчинів хлоридів візуалізувалася методом чутливих кристалізацій.
Результати. Показано, що під дією низької частоти електромагнітних полів виникає арборизація хлоридів, яка є основним солевим компонентом цитоплазми клітин, включаючи нейрони. Це дало змогу пояснити природу арборизації шкідливих нейронів, яка відбувається під впливом низької частоти електромагнітних полів в живому організмі.
Висновки. Під дією низької частоти електромагнітних полів з'являється негативна електризація розчинів хлоридів. Зокрема, оптимізація змісту хлоридів в організмі дає змогу створити оптимальні умови для арборизації аксонів та формування нових капілярів за допомогою низької частоти електромагнітних полів.

Ключові слова: арборизація, нейрон, регенерація, арборизація аксонів, електромагнітне поле.

DOI: https://doi.org/10.26641/1997-9665.2018.4.73-77

y.pivovarenko@gmail.com
© SI «Дніпропетровська медична академія Міністерства охорони здоров’я України», «Морфологія»
carbon, which was previously moistened with an aqueous solution of sodium chloride (fig. 4, left); even more numerous filamentous crystals, the plexus of which resembles cotton wool, are formed on the surface of the drying silica gel, which was also pre-moistened with an aqueous solution of sodium chloride (fig. 4, right) [1].

Fig. 2. It is the crystals that formed after the drying of solutions of CuSO₄ prepared on water potentials of +250 mV (left) and –250 mV (right).

Fig. 3. Crystals formed after drying of the NaCl solution prepared with water with the potential of –200 mV [1].

Fig. 4. This is how NaCl crystals appear on the positively charged surface of activated carbon (left) and on the negatively charged surface of silica gel (right) [1].

No less important, in the aspect of the topic of this article, was the confirmation of the detected correlation with respect to substances of non-salt nature (fig. 5) [2, 3].

All these results have led to the conclusion that in contact with the negatively charged water is the formation of filamentous or tree-like structures of substances of different chemical nature. This conclusion stimulated the emergence of interest in the conditions and physical factors causing arborization. To a large extent, these studies were stimulated by the ideas of those neurophysiologists and neurologists who identify the conditions that cause the arborization of salt crystals, with the conditions under which the arborization of neural axons occurs [6]. In this aspect, it was impossible not to pay attention to the successful regeneration of damaged neurons under the influence of low-frequency EMFs [7-20]. This suggested that low-frequency EMFs can cause negative electrization of aqueous solutions, i.e. – to form the conditions necessary for the arborization of their contents. Here are the results of experimental verification of this assumption.

Aim
The aim of the work was to test the hypothesis that conditions for the arborization of chlorides arise in low-frequency electromagnetic fields, and, consequently, for the arborization of neural axons.

Materials and methods
A sensitive crystallization method was used.
Various low-frequency (0 ÷ 100 Hz) EMF generators were used for negative electric power of chloride aqueous solutions. All salts were purchased from «Ukrechim» (Ukraine).

Results and discussion

Since chlorides are the main salt components of the neural cytoplasm, the effect of low-frequency EMFs on the crystallization of various chlorides was studied in the first place. In the course of numerous experiments it was found that the tree crystals are formed by drying different solutions of chlorides, previously exposed to variable EMFs low frequency (0 – 100 Hz), including direct (fig. 6, 7). Thus, the assumption made by a priori was confirmed experimentally.

The results obtained allow us to offer a clear explanation of how low-frequency EMFs can cause negative electrization in the cytoplasm of neurons. This explanation is convenient to present in the form of a chain of facts:

1) Under the influence of low-frequency EMFs in the cytoplasm of neurons there are electric currents.

2) When electric currents flow in solutions containing chloride anions, at least two chemical reactions occur [5]:
 1. H₂O → H₂ + O* (in fact, the electrolysis of water);
 2. O* + Cl⁻ → ClO⁻.

These reactions show how the concentration of dissolved hydrogen gas can increase in the cells of intact nerve fibers under the action of low-frequency EMFs. As at contact with gaseous hydrogen water and water solutions receive a negative charge [5], there will be a negative electrization of intact nerve fibers. Therefore, under the influence of low-frequency EMFs can be created conditions that contribute to the arborization of the contents of the cytoplasm of neurons, and as a consequence-the formation of new dendroid residues of neurons.

Thus, due to the obtained results and clear explanation, the described cases of restoration of innervation of the affected tissues under the action of low-frequency EMFs [7-20], received a clear physico-chemical justification. It should be noted that the proposed explanation of the mechanism of restoration of neurons under the action of low-frequency EMFs is not consistent with the previously proposed explanations of other authors, who, however, did not explain the nature of arborization [19, 20].

It seems appropriate to make two relevant additions. Given that sodium chloride is the most common salt component of blood plasma, it can be assumed that the capillaries are also able to be updated and under the influence of low-frequency EMFs.

Also, given that the heart is the most powerful source of low-frequency EMFs in the human body, it
can be assumed that the activity of the heart determines the ability of neurons and capillaries to regenerate. Agree, this assumption allows you to expand existing ideas about the functions of the heart. It is advisable, for example, to consider the possible effect of cardiac EMFs on the formation of both the nervous and circulatory systems of the developing fetus.

Conclusion
The low-frequency EMFs can cause negative electrization of aqueous solutions, i.e. – to form the conditions necessary for the arborization of their contents. For this reason, low-frequency EMFs can stimulate the arborization of both neural axons and blood capillaries, stimulating their regeneration.

Feather research perspectives
To demonstrate that low-frequency EMFs stimulate arborization axons and capillaries in vivo.

References
ням кристалів голько- або рослинної форми. Також було встановлено, що низькочастотні електромагнітні поля стимулюють регенерацію ушкоджених нейронів. **Мета.** Метою роботи була перевірка гіпотези про те, що за дії низькочастотних електромагнітних полів можуть відбуватися негативна електризація цитоплазми нейронів та їх аксональна арборізація. **Методи.** Для негативної електризації водних розчинів хлоридів застосували різні низькочастотні (0 ÷ 100 Гц) генератори ЕМП. Негативну електризацію водних розчинів нейронів візуалізували за допомогою методу чутливої кристалізації. **Результати.** Показано, що за дії низькочастотних електромагнітних полів відбувається арборізація хлоридів, які є основними сольовими компонентами цитоплазми клітин, в тому числі нейронів. Це дозволило пояснити природу аксональної арборізації пошкоджених нейронів, яка спостерігається під впливом низькочастотних електромагнітних полів in vivo. **Підсумок.** За дії низькочастотних електромагнітних полів відбувається негативна електризація водних розчинів хлоридів. Попередньо оптимізувавши вміст хлоридів в організмі, за допомогою низькочастотних електромагнітних полів можна створити оптимальні умови для аксональної арборізації нейронів та утворення нових капілярів.

Ключові слова: арборізації, нейрон, регенерація, аксон, електромагнітне поле.

Пивоваренко Ю.В. Природа аксональної арборізації, проходячій под действіем низкочастотних електромагнітних полей.

РЕФЕРАТ. Актуальність. Раніше було установлено, що висихання солевих растворів, приготовлених на воді з отрицальним зарядом, сопровождається арборізацією солевих кристаллів, т.e. – образованием кристаллов игло- или растениевидной формы. Також було установлено, що низькочастотні електромагнітні поля стимулюють регенерацію поврежденних нейронів. Цель работы была проверка гипотезы о том, что под действием низкочастотных электромагнитных полей могут происходить отрицательная электризация цитоплазмы нейронов и их аксональная арборізація. **Методи.** Для отрицательной электризации водных растворов хлоридов использовались различные низкочастотные (0 ÷ 100 Гц) генераторы ЭМП. Отрицательную электризацию водных растворов хлоридов визуализировали с помощью метода чувствительной кристаллизации. **Результаты.** Показано, что под действием низкочастотных электромагнитных полей происходит арборізація хлоридів, які є основними сольовими компонентами цитоплазми кліток, в тому числі нейронів. Це дозволило объяснить природу аксональної арборізації поврежденных нейронов, которая наблюдается под воздействием низкочастотных електромагнітних полей in vivo. **Заключение.** Под действіем низкочастотних електромагнітних полей происходит негативная електризація водних растворов хлоридів. Предварительно оптимизировав содержание хлоридов в організмі з помощью низкочастотних електромагнітних полей, можна создавать оптимальні умови для аксональної арborізації нейронів і образования нових капілярів.

Ключевые слова: арборізації, нейрон, регенерація, аксон, електромагнітне поле.