УЛЬТРАСТРУКТУРНІ ОСОБЛИВОСТІ РЕАКЦІЇ БІЛОК-СИНТЕЗУЮЧОГО АПАРАТУ ФОЛІКУЛЯРНИХ ЕНДОКРИНОЦИТІВ ЩИТОПОДІБНОЇ ЗА-ЛОЗИ ПРИ ДИСТАНТНІЙ ВЗАЄМОДІЇ З ПУХЛІНОЮ

Крышка I.S. The ultrastructural features of the reaction of protein-synthesizing apparatus of follicular cells of the thyroid gland at distant interaction with the tumor.

ABSTRACT. Background. Long-standing observations among the patients with primary cancer of the thyroid gland show the high risk of primary cancer appearance in other organs. Simultaneously, the high risk of the appearance of thyroid gland cancer is observed after the malignant non-thyroid neoplasms. Objective. The purpose of the present investigation was to study the condition and dynamics of changes in the protein-synthesizing apparatus of follicular cell of the thyroid gland during the process of distant interaction with the tumor in the experiment. Methods. As the experimental model of cancer we have used a model of the slightly differentiated solid adenocarcinoma of Guerin. Experiment was carried out on the male Wistar. Rats were divided into 2 groups. First group - control. In the second group - transplanted cells of Guerin's carcinoma by hypodermic injection beside the region of thighs. Results. After 2 weeks of transplanted tumor growth in follicular cells the increase in the free ribosome number is observed, they are localized in the apical and central part of cells. Granular endoplasmic reticulum is represented by cisterns with ribosomes unevenly distributed on their surface. The mutual parallel alignment of the membranes of endoplasmic reticulum is disrupted. These changes could evidence the violations of the direct way of protein synthesis and activation of the intracellular system of thyrocyte restitution. Conclusion. Distant interaction is manifested on the early stage of tumor progression based on changes in the relationship between the free and connected ribosomes in cell cytoplasm with the subsequent development of diffuse changes of the granular endoplasmic reticulum and the disturbance of the synthetic, transport and secretory functions of the cell.

Key words: transplanted tumor, distant interaction, thyrocyte, ribosome.

Citation:

DOI: https://doi.org/10.26641/1997-9665.2016.3.308-313
УДК 576.311 33:614.414

Вегун
Пухлини щитоподібної залози складають більше 1% від всіх злозкісних пухлин. Щорічно в світ діагностується більше 122 000 нових випадків злозкісних новоутворень щитоподібної залози [1]. Багатоцентрів дослідження, в яких проводилось тривале спостереження (протягом 25 років) за 390222 хворими, які страждають первинним раком щитоподібної залози, показали, що у таких хворих є високий ризик розвитку первинного раку інших органів. При цьому на 30% збільшується як ризик вторинного раку (первинної пухлині в інших органах), так і ризик розвитку раку щитоподібної залози після різноманітних інших первинних злозкісних пухлин [2].

Патоанатомія пухлин щитоподібної залози – це процес багатофакторний, який залежить від генетичної стійкості, дії гормональних чинників і чинників зовнішнього середовища. Реалізація цих патогенетичних чинників на клітинні міцесь опосередкує її внутрішньоклітинний бідж - синтезуючий апарат.

Метод: проведеного дослідження стало вивчення стану і динаміки змін білок - синтезуючо-
го апарат фолікулярних сидероцинових шипо-подібної залози в процесі дистантної взаємодії з пухлиною в сидерометії.

Матеріали і методи


Експеримент проводили на шуках - самцях лівих Вістар масою 120 - 160 г. Тварини були розсілені на 2 групи. Перша група (10 тварин) - контрольна. Другий (27 тварин) трансплантували штам клітин карциноми Герцена шляхом підшкірової ін'екції в область стегна 1% від маси пухливих клітин, які були отримані з 2-х тисяч шипо-подібної клітин. Первинний матеріал для ін'екції був отриманий в ДУ «Інститут експериментальної онкології і радіобіології імені Р. С. Кавецького». Тварин вводили з експерименту на 2, 4 і 12 тижні. Для електронно-мікроскопічного дослідження матеріал фіксували при температурі +2°С протягом 3-4 днів у 2,5%-ному розчині глютаральдегіду (виготовленому на 0,2М фосфатному буфері pH=7,4) з відстанню пастфіксуючим розчином 1 години у 1%-ному натрійфосфатному (pH=7,4) розчином тетраксиду осмію («SPh», США). Ембедуvalся в спирті з різно- го концентрації та пропорції склодових ембедуvalся в спирті з різно- го концентрації та пропорції склодових. Ембедуvalся в спирті з різно- го концентрації та пропорції склодових. Ембедуvalся в спирті з різно- го концентрації та пропорції склодових. Ембедуvalся в спирті з різно- го концентрації та пропорції склодових. Ембедуvalся в спирті з різно- го концентрації та пропорції склодових. Ембедуvalся в спирті з різно- го концентрації та пропорції склодових.

Результати та їх обговорення

Фолікулярні сидероцини є високоспециа- лізованими поларизованими клітинами, які се- рить участь в синтезі та транспорти мікроскопічних синтезо- ваних шипо-подібної залози від продукту Гольдака до шипо-подібної залози та ін- нових шипо-подібної залози (транспорт шипо-подібних білків від продукту Гольдака до шипо-подібної залози). Основним білком фолікулярних сидероцинових шипо-подібної залози в процесі дистантної взаємодії з пухлиною в сидерометії. Тиро- глобулін синтезується на полірібосомах грану- ларной ендоплазматичної сітки (ГЕПС), ініціювання якої здійснюється у тваринних діоцентрах, що міс- тять вуглеводи. Пов'язаний рибосом ендоплазматичної сітки синтезують претироглобулін, який переноситься в цистерни, де формуються вторинні та третинні структури тироглобуліна. Тре- тинна структура тироглобуліна утворюється в резултаті приєднання до претироглобуліну мо- лекули вуглеводів за допомогою 7 модульних хаперонів. В цистернах гранулярної ендоплазматичної сітки тироглобуліна транспортується в комплекс Гольдака, де відбувається остаточне утворення вуглеводних сульфатних компонентів. Далі у складі вакуоль тироглобулін переноситься до апикальної частини клітини, де цукрічним ск- зозоною виявляється у фолікулярну порожнину. На апикальній поверхні тиронити відбувається і їх будова в цистернах тироглобуліна і утворення її комбінувати [4].

Стан білк - синтезуючих систем фолікуляр- них сидероцинових шипо-подібної залози оцінювали на підставі ана- лізу кількості (об’ємна доля цистерни ендоплазматич- ної ретікулум, від’ємних і пов’язаних з мембранами ендоплазматичної сітки рибосом) і щитооптичних (розділ органел по шипо- подібній відкритих кільця) параметри. У складі фолікулярної структури тиронита були виявлені 3 зони: а) апикальна поверхня (об’ємна відкритих кільця і формуючих кругові опори), б) центральна зона (рівня жолудь тиронита і органел ендоплазматичного і секреторного типу). б) Воксельовинка поверхня (формує апікаль- ні мембрани і формує міжклітинні контакти з судинними клітинами у фолікулі).

У контрольних груп в шипо-подібних тиронитах гранулярної ендоплазматичної сітки розвивалася добре і представлена анатомічною клітинами і чистими з’єднаними ри- босомами. Мембрани ендоплазматичної сітки орієнтовані паралельно одній йній. Білки рибосо- ми несівні і розташовуються паралельно.

Цистерни і каналі ендоплазматичної сітки розташовані паралельно чини фолікулі.

Епітеліальна структура тироглобуліна утворюється в антипеліальну залозу рибосом. Інтенсивна ендоплазматична структура представлена цистернами на поверхні явищ взаємного розташовання рядових. Взаємна паралельна орієнтація мембран ендоплазматичної сітки порушена.
Рис 1. Канальні та цистерни гранулярної ендоліазматичної сітки щурів контрольної групи. Електронограма. х22500.

Рис 2. Цистерни ендоліазматичної сітки та вільні рибосоми в апікальній частині фолікулярних ендокринцітів на 2 тижні росту трансплантованої пухлини. Електронограма. х23000.

Через 4 тижні росту трансплантованої пухлини в цитоплазмі тироцитів відзначається значне розширення цистерн гранулярної ендоліазматичної сітки, які мають вигляд великих вакуолей і порожнин, заповнених пластічною матір'ю. Цистерни ЕПС розташовані в усіх 3 зонах тироцита. Вільні рибосоми розташовані дифузно по всьому об'єму цитоплазми клітин.

На 12 тижні росту трансплантованої пухлини в цитоплазмі тироцитів виявлено розширення цистерн гранулярної ЕПС з однинчими рибосомами на її поверхні, які розташовані в апікальній і базолатеральній зонах клітин. Порожнини ЕПС заповнені дрібнозернистим матриксом. Вільні рибосоми рівномірно розподілені по всьому об'єму цитоплазми.
Рис 3. Цистерни ендоплазматичної сітки в злікальній частині фолікулярних ендокринцітів на 4 тижні росту трансплантованої пухлини. Електронограма ×19000.

Рис 4. Цистерни ендоплазматичної сітки в злікальній частині фолікулярних ендокринцітів на 12 тижні росту трансплантованої пухлини. Електронограма ×15000.
Кількісні параметри змін в системі синтезу біополімерів фолікулярних ендокріноцитів представлені в таблиці 1.

Таблиця 1
Динаміка змін об'ємної шільності компонентів білків — синтезуючої системи цитоплазми фолікулярних ендокріноцитів цитоплазматичної залози

<table>
<thead>
<tr>
<th>Група</th>
<th>Контроль</th>
<th>Карпінома Герсена 2 тижні росту</th>
<th>Карпінома Герсена 4 тижні росту</th>
<th>Карпінома Герсена 12 тижні росту</th>
</tr>
</thead>
<tbody>
<tr>
<td>Об'ємна шільність вільних рибосом</td>
<td>12,6±3,17</td>
<td>23,47±5,11*</td>
<td>18,19±2,96*</td>
<td>16,38±2,83</td>
</tr>
<tr>
<td>Об'ємна шільність зв'язаних рибосом</td>
<td>47,15±6,93</td>
<td>31,26±4,24*</td>
<td>12,68±3,05*</td>
<td>24,29±4,13*</td>
</tr>
<tr>
<td>Об'ємна шільність цистерн ендоплазматичної сетики</td>
<td>28,54±4,32</td>
<td>23,49±6,18</td>
<td>49,72±3,98*</td>
<td>36,67±4,78*</td>
</tr>
</tbody>
</table>

* = статистично достовірні зміни параметру (p<0,05) у порівнянні з групою контролю

На 2 тижні росту пухлині спостерігається доситьке збільшення в цитоплазмі тироцитів вільних рибосом на 86%, з одночасним зменшенням кількості рибосом, пов'язаних з мембранами ЕПС на 34% при порівнянні з інтактним контролем. Ці зміни можуть свідчити про порушення прямого спосібу синтезу білка і активної системи внутрішньоклітинної рістувальності тироцитів.

На 4 тижні росту пухлині відбувається найбільш значний збільшення в інтропізі білкових ендокріноцитів - кількость вільних рибосом збільшується на 44%, а число зв'язаних рибосом достовірно зменшується при порівнянні з контольним рівнем на 169%. При цьому об'ємна шільність цистерн ЕПС збільшується на 74%. Ці зміни дозволяють припустити функціональну блокаду синтезу біополімерів в тироцитах, викликану дистанцією дію пухлини.

На 12 тижні росту пухлині зникають тенденція негативної динаміки дії пухлин на систему синтезу біополімерів фолікулярних ендокріноцитів, яка проявляється в зменшенні шільності зв'язаних з мембранами ЕПС рибосом на 49% і збільшенні об'єму цистерн ЕПС на 28%, що свідчить про порушення внутрішньоклітинних процесів транспорту і синтезу біополімерів як причиною і непрямим способом.

Висновок
Дистанція дії пухлин на ультраструктуру апарату синтезу біополімерів у фолікулярних ендокріноцитах цитоплазматичної залози помітно проявляється на рівні стадій пухлини прогресу (2 тиждень росту) зі зміною структури між вільними і зв'язаними рибосомами анапластичної зони клітин, що приймає участь у формуванні фолікулярно-колоїдного бар’єру залози. У між терміна пухлиної прогресії (4 і 12 тижнів росту) відбуваються дифузні зміни у білки-синтетичній системі клітин, які проявляються в порушення синтетичної, інкапсулюваної і трансформаційної функції ендоплазматичної сетики.

Перспективи подальших розробок пов'язані з вивченням механізмів інтеграції внутрішньоклітинних структур в процес адаптації клітин і розробкою способи спрямуваного впливу на ці процеси.
Хрюков И.С. Ультраструктурные особенности реакции белок — синтезирующего аппарата фолликулярных эндокриницитов щитовидной железы при дистантом взаимодействии с опухолью.

Реферат. Проведено цитопатографическое и количественное ультрамикроскопическое изучение динамики изменений в системе внутриклеточного синтеза белка в тироцитах в процессе дистанного взаимодействия с трансплантированной опухолью. Дистанное взаимодействие проявляется на ранней стадии опухолевой прогрессии с изменениями соотношения между свободными и связанными рибосомами цитоплазмы клеток, с последующим развитием диффузионных изменений в гранулярной эндоплазматической сети и нарушеним синтетической, транспортной и секреторной функций клетки.

Ключевые слова: трансплантированная опухоль, дистанто взаимодействие, фолликулярный эндокриницит, рибосомы.